ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 Unicode version

Theorem ssequn2 3295
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3292 . 2  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
2 uncom 3266 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
32eqeq1i 2173 . 2  |-  ( ( A  u.  B )  =  B  <->  ( B  u.  A )  =  B )
41, 3bitri 183 1  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1343    u. cun 3114    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by:  unabs  3353  pwssunim  4262  pwundifss  4263  oneluni  4409  relresfld  5133  relcoi1  5135  fsnunf  5685  unsnfidcel  6886  fidcenumlemr  6920  exmidfodomrlemim  7157  ennnfonelemhf1o  12346
  Copyright terms: Public domain W3C validator