Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 Unicode version

Theorem ssequn2 3255
 Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3252 . 2
2 uncom 3226 . . 3
32eqeq1i 2148 . 2
41, 3bitri 183 1
 Colors of variables: wff set class Syntax hints:   wb 104   wceq 1332   cun 3075   wss 3077 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122 This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-v 2692  df-un 3081  df-in 3083  df-ss 3090 This theorem is referenced by:  unabs  3313  pwssunim  4215  pwundifss  4216  oneluni  4362  relresfld  5077  relcoi1  5079  fsnunf  5629  unsnfidcel  6819  fidcenumlemr  6853  exmidfodomrlemim  7077  ennnfonelemhf1o  11982
 Copyright terms: Public domain W3C validator