ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 Unicode version

Theorem ssequn2 3377
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3374 . 2  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
2 uncom 3348 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
32eqeq1i 2237 . 2  |-  ( ( A  u.  B )  =  B  <->  ( B  u.  A )  =  B )
41, 3bitri 184 1  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1395    u. cun 3195    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by:  unabs  3435  pwssunim  4374  pwundifss  4375  oneluni  4521  relresfld  5257  relcoi1  5259  fsnunf  5838  unsnfidcel  7079  tpfidceq  7088  fidcenumlemr  7118  exmidfodomrlemim  7375  ennnfonelemhf1o  12979  lspun0  14383  plyrecj  15431  dvply2g  15434
  Copyright terms: Public domain W3C validator