ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 Unicode version

Theorem ssequn2 3345
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3342 . 2  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
2 uncom 3316 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
32eqeq1i 2212 . 2  |-  ( ( A  u.  B )  =  B  <->  ( B  u.  A )  =  B )
41, 3bitri 184 1  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1372    u. cun 3163    C_ wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-in 3171  df-ss 3178
This theorem is referenced by:  unabs  3403  pwssunim  4330  pwundifss  4331  oneluni  4477  relresfld  5211  relcoi1  5213  fsnunf  5783  unsnfidcel  7017  tpfidceq  7026  fidcenumlemr  7056  exmidfodomrlemim  7308  ennnfonelemhf1o  12755  lspun0  14158  plyrecj  15206  dvply2g  15209
  Copyright terms: Public domain W3C validator