ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 Unicode version

Theorem ssequn2 3300
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3297 . 2  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
2 uncom 3271 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
32eqeq1i 2178 . 2  |-  ( ( A  u.  B )  =  B  <->  ( B  u.  A )  =  B )
41, 3bitri 183 1  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    = wceq 1348    u. cun 3119    C_ wss 3121
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127  df-ss 3134
This theorem is referenced by:  unabs  3358  pwssunim  4269  pwundifss  4270  oneluni  4416  relresfld  5140  relcoi1  5142  fsnunf  5696  unsnfidcel  6898  fidcenumlemr  6932  exmidfodomrlemim  7178  ennnfonelemhf1o  12368
  Copyright terms: Public domain W3C validator