ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 Unicode version

Theorem ssequn2 3337
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3334 . 2  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
2 uncom 3308 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
32eqeq1i 2204 . 2  |-  ( ( A  u.  B )  =  B  <->  ( B  u.  A )  =  B )
41, 3bitri 184 1  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1364    u. cun 3155    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-in 3163  df-ss 3170
This theorem is referenced by:  unabs  3395  pwssunim  4320  pwundifss  4321  oneluni  4467  relresfld  5200  relcoi1  5202  fsnunf  5765  unsnfidcel  6991  tpfidceq  7000  fidcenumlemr  7030  exmidfodomrlemim  7280  ennnfonelemhf1o  12655  lspun0  14057  plyrecj  15083  dvply2g  15086
  Copyright terms: Public domain W3C validator