ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssequn2 Unicode version

Theorem ssequn2 3354
Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
Assertion
Ref Expression
ssequn2  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )

Proof of Theorem ssequn2
StepHypRef Expression
1 ssequn1 3351 . 2  |-  ( A 
C_  B  <->  ( A  u.  B )  =  B )
2 uncom 3325 . . 3  |-  ( A  u.  B )  =  ( B  u.  A
)
32eqeq1i 2215 . 2  |-  ( ( A  u.  B )  =  B  <->  ( B  u.  A )  =  B )
41, 3bitri 184 1  |-  ( A 
C_  B  <->  ( B  u.  A )  =  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373    u. cun 3172    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-in 3180  df-ss 3187
This theorem is referenced by:  unabs  3412  pwssunim  4349  pwundifss  4350  oneluni  4496  relresfld  5231  relcoi1  5233  fsnunf  5807  unsnfidcel  7044  tpfidceq  7053  fidcenumlemr  7083  exmidfodomrlemim  7340  ennnfonelemhf1o  12899  lspun0  14302  plyrecj  15350  dvply2g  15353
  Copyright terms: Public domain W3C validator