| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssequn2 | Unicode version | ||
| Description: A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
| Ref | Expression |
|---|---|
| ssequn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 3374 |
. 2
| |
| 2 | uncom 3348 |
. . 3
| |
| 3 | 2 | eqeq1i 2237 |
. 2
|
| 4 | 1, 3 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 |
| This theorem is referenced by: unabs 3435 pwssunim 4374 pwundifss 4375 oneluni 4521 relresfld 5257 relcoi1 5259 fsnunf 5838 unsnfidcel 7079 tpfidceq 7088 fidcenumlemr 7118 exmidfodomrlemim 7375 ennnfonelemhf1o 12979 lspun0 14383 plyrecj 15431 dvply2g 15434 |
| Copyright terms: Public domain | W3C validator |