ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eloni Unicode version

Theorem eloni 4334
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.)
Assertion
Ref Expression
eloni  |-  ( A  e.  On  ->  Ord  A )

Proof of Theorem eloni
StepHypRef Expression
1 elong 4332 . 2  |-  ( A  e.  On  ->  ( A  e.  On  <->  Ord  A ) )
21ibi 175 1  |-  ( A  e.  On  ->  Ord  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128   Ord word 4321   Oncon0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-in 3108  df-ss 3115  df-uni 3773  df-tr 4063  df-iord 4325  df-on 4327
This theorem is referenced by:  elon2  4335  onelon  4343  onin  4345  onelss  4346  ontr1  4348  onordi  4385  onss  4450  suceloni  4458  sucelon  4460  onsucmin  4464  onsucelsucr  4465  onintonm  4474  ordsucunielexmid  4488  onsucuni2  4521  nnord  4569  tfrlem1  6249  tfrlemisucaccv  6266  tfrlemibfn  6269  tfrlemiubacc  6271  tfrexlem  6275  tfr1onlemsucfn  6281  tfr1onlemsucaccv  6282  tfr1onlembfn  6285  tfr1onlemubacc  6287  tfrcllemsucfn  6294  tfrcllemsucaccv  6295  tfrcllembfn  6298  tfrcllemubacc  6300  sucinc2  6386  phplem4on  6805  ordiso  6970
  Copyright terms: Public domain W3C validator