![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eloni | Unicode version |
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
eloni |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 4200 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ibi 174 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-in 3005 df-ss 3012 df-uni 3654 df-tr 3937 df-iord 4193 df-on 4195 |
This theorem is referenced by: elon2 4203 onelon 4211 onin 4213 onelss 4214 ontr1 4216 onordi 4253 onss 4310 suceloni 4318 sucelon 4320 onsucmin 4324 onsucelsucr 4325 onintonm 4334 ordsucunielexmid 4347 onsucuni2 4380 nnord 4426 tfrlem1 6073 tfrlemisucaccv 6090 tfrlemibfn 6093 tfrlemiubacc 6095 tfrexlem 6099 tfr1onlemsucfn 6105 tfr1onlemsucaccv 6106 tfr1onlembfn 6109 tfr1onlemubacc 6111 tfrcllemsucfn 6118 tfrcllemsucaccv 6119 tfrcllembfn 6122 tfrcllemubacc 6124 sucinc2 6207 phplem4on 6583 ordiso 6729 |
Copyright terms: Public domain | W3C validator |