| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | Unicode version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4420 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 |
| This theorem is referenced by: elon2 4423 onelon 4431 onin 4433 onelss 4434 ontr1 4436 onordi 4473 onss 4541 onsuc 4549 onsucb 4551 onsucmin 4555 onsucelsucr 4556 onintonm 4565 ordsucunielexmid 4579 onsucuni2 4612 nnord 4660 tfrlem1 6394 tfrlemisucaccv 6411 tfrlemibfn 6414 tfrlemiubacc 6416 tfrexlem 6420 tfr1onlemsucfn 6426 tfr1onlemsucaccv 6427 tfr1onlembfn 6430 tfr1onlemubacc 6432 tfrcllemsucfn 6439 tfrcllemsucaccv 6440 tfrcllembfn 6443 tfrcllemubacc 6445 sucinc2 6532 phplem4on 6964 ordiso 7138 |
| Copyright terms: Public domain | W3C validator |