| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | Unicode version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4463 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 df-tr 4182 df-iord 4456 df-on 4458 |
| This theorem is referenced by: elon2 4466 onelon 4474 onin 4476 onelss 4477 ontr1 4479 onordi 4516 onss 4584 onsuc 4592 onsucb 4594 onsucmin 4598 onsucelsucr 4599 onintonm 4608 ordsucunielexmid 4622 onsucuni2 4655 nnord 4703 tfrlem1 6452 tfrlemisucaccv 6469 tfrlemibfn 6472 tfrlemiubacc 6474 tfrexlem 6478 tfr1onlemsucfn 6484 tfr1onlemsucaccv 6485 tfr1onlembfn 6488 tfr1onlemubacc 6490 tfrcllemsucfn 6497 tfrcllemsucaccv 6498 tfrcllembfn 6501 tfrcllemubacc 6503 sucinc2 6590 phplem4on 7025 ordiso 7199 |
| Copyright terms: Public domain | W3C validator |