| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | Unicode version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4438 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-in 3180 df-ss 3187 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 |
| This theorem is referenced by: elon2 4441 onelon 4449 onin 4451 onelss 4452 ontr1 4454 onordi 4491 onss 4559 onsuc 4567 onsucb 4569 onsucmin 4573 onsucelsucr 4574 onintonm 4583 ordsucunielexmid 4597 onsucuni2 4630 nnord 4678 tfrlem1 6417 tfrlemisucaccv 6434 tfrlemibfn 6437 tfrlemiubacc 6439 tfrexlem 6443 tfr1onlemsucfn 6449 tfr1onlemsucaccv 6450 tfr1onlembfn 6453 tfr1onlemubacc 6455 tfrcllemsucfn 6462 tfrcllemsucaccv 6463 tfrcllembfn 6466 tfrcllemubacc 6468 sucinc2 6555 phplem4on 6990 ordiso 7164 |
| Copyright terms: Public domain | W3C validator |