| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eloni | Unicode version | ||
| Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
| Ref | Expression |
|---|---|
| eloni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elong 4409 |
. 2
| |
| 2 | 1 | ibi 176 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-in 3163 df-ss 3170 df-uni 3841 df-tr 4133 df-iord 4402 df-on 4404 |
| This theorem is referenced by: elon2 4412 onelon 4420 onin 4422 onelss 4423 ontr1 4425 onordi 4462 onss 4530 onsuc 4538 onsucb 4540 onsucmin 4544 onsucelsucr 4545 onintonm 4554 ordsucunielexmid 4568 onsucuni2 4601 nnord 4649 tfrlem1 6375 tfrlemisucaccv 6392 tfrlemibfn 6395 tfrlemiubacc 6397 tfrexlem 6401 tfr1onlemsucfn 6407 tfr1onlemsucaccv 6408 tfr1onlembfn 6411 tfr1onlemubacc 6413 tfrcllemsucfn 6420 tfrcllemsucaccv 6421 tfrcllembfn 6424 tfrcllemubacc 6426 sucinc2 6513 phplem4on 6937 ordiso 7111 |
| Copyright terms: Public domain | W3C validator |