Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eloni | Unicode version |
Description: An ordinal number has the ordinal property. (Contributed by NM, 5-Jun-1994.) |
Ref | Expression |
---|---|
eloni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elong 4332 | . 2 | |
2 | 1 | ibi 175 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 word 4321 con0 4322 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 df-tr 4063 df-iord 4325 df-on 4327 |
This theorem is referenced by: elon2 4335 onelon 4343 onin 4345 onelss 4346 ontr1 4348 onordi 4385 onss 4450 suceloni 4458 sucelon 4460 onsucmin 4464 onsucelsucr 4465 onintonm 4474 ordsucunielexmid 4488 onsucuni2 4521 nnord 4569 tfrlem1 6249 tfrlemisucaccv 6266 tfrlemibfn 6269 tfrlemiubacc 6271 tfrexlem 6275 tfr1onlemsucfn 6281 tfr1onlemsucaccv 6282 tfr1onlembfn 6285 tfr1onlemubacc 6287 tfrcllemsucfn 6294 tfrcllemsucaccv 6295 tfrcllembfn 6298 tfrcllemubacc 6300 sucinc2 6386 phplem4on 6805 ordiso 6970 |
Copyright terms: Public domain | W3C validator |