ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucssi Unicode version

Theorem onsucssi 4555
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onsucssi.1  |-  A  e.  On
onsucssi.2  |-  B  e.  On
Assertion
Ref Expression
onsucssi  |-  ( A  e.  B  <->  suc  A  C_  B )

Proof of Theorem onsucssi
StepHypRef Expression
1 onsucssi.1 . 2  |-  A  e.  On
2 onsucssi.2 . . 3  |-  B  e.  On
32onordi 4474 . 2  |-  Ord  B
4 ordelsuc 4554 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
51, 3, 4mp2an 426 1  |-  ( A  e.  B  <->  suc  A  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176    C_ wss 3166   Ord word 4410   Oncon0 4411   suc csuc 4413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-sn 3639  df-uni 3851  df-tr 4144  df-iord 4414  df-on 4416  df-suc 4419
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator