Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucssi | Unicode version |
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
Ref | Expression |
---|---|
onsucssi.1 | |
onsucssi.2 |
Ref | Expression |
---|---|
onsucssi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onsucssi.1 | . 2 | |
2 | onsucssi.2 | . . 3 | |
3 | 2 | onordi 4403 | . 2 |
4 | ordelsuc 4481 | . 2 | |
5 | 1, 3, 4 | mp2an 423 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2136 wss 3115 word 4339 con0 4340 csuc 4342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-v 2727 df-un 3119 df-in 3121 df-ss 3128 df-sn 3581 df-uni 3789 df-tr 4080 df-iord 4343 df-on 4345 df-suc 4348 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |