ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucssi Unicode version

Theorem onsucssi 4536
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onsucssi.1  |-  A  e.  On
onsucssi.2  |-  B  e.  On
Assertion
Ref Expression
onsucssi  |-  ( A  e.  B  <->  suc  A  C_  B )

Proof of Theorem onsucssi
StepHypRef Expression
1 onsucssi.1 . 2  |-  A  e.  On
2 onsucssi.2 . . 3  |-  B  e.  On
32onordi 4455 . 2  |-  Ord  B
4 ordelsuc 4535 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
51, 3, 4mp2an 426 1  |-  ( A  e.  B  <->  suc  A  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2164    C_ wss 3153   Ord word 4391   Oncon0 4392   suc csuc 4394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-sn 3624  df-uni 3836  df-tr 4128  df-iord 4395  df-on 4397  df-suc 4400
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator