ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucssi Unicode version

Theorem onsucssi 4490
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onsucssi.1  |-  A  e.  On
onsucssi.2  |-  B  e.  On
Assertion
Ref Expression
onsucssi  |-  ( A  e.  B  <->  suc  A  C_  B )

Proof of Theorem onsucssi
StepHypRef Expression
1 onsucssi.1 . 2  |-  A  e.  On
2 onsucssi.2 . . 3  |-  B  e.  On
32onordi 4411 . 2  |-  Ord  B
4 ordelsuc 4489 . 2  |-  ( ( A  e.  On  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
51, 3, 4mp2an 424 1  |-  ( A  e.  B  <->  suc  A  C_  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2141    C_ wss 3121   Ord word 4347   Oncon0 4348   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-sn 3589  df-uni 3797  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator