Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  onirri Unicode version

Theorem onirri 4458
 Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
onirri.1
Assertion
Ref Expression
onirri

Proof of Theorem onirri
StepHypRef Expression
1 onirri.1 . . 3
21onordi 4348 . 2
3 ordirr 4457 . 2
42, 3ax-mp 5 1
 Colors of variables: wff set class Syntax hints:   wn 3   wcel 1480   word 4284  con0 4285 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-setind 4452 This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-in 3077  df-ss 3084  df-sn 3533  df-uni 3737  df-tr 4027  df-iord 4288  df-on 4290 This theorem is referenced by:  enpr2d  6711  pm54.43  7046
 Copyright terms: Public domain W3C validator