ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onirri Unicode version

Theorem onirri 4590
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
onirri.1  |-  A  e.  On
Assertion
Ref Expression
onirri  |-  -.  A  e.  A

Proof of Theorem onirri
StepHypRef Expression
1 onirri.1 . . 3  |-  A  e.  On
21onordi 4472 . 2  |-  Ord  A
3 ordirr 4589 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
42, 3ax-mp 5 1  |-  -.  A  e.  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2175   Ord word 4408   Oncon0 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186  ax-setind 4584
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-sn 3638  df-uni 3850  df-tr 4142  df-iord 4412  df-on 4414
This theorem is referenced by:  ontri2orexmidim  4619  enpr2d  6910  pm54.43  7297  pw1ne1  7340
  Copyright terms: Public domain W3C validator