ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onirri Unicode version

Theorem onirri 4591
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.)
Hypothesis
Ref Expression
onirri.1  |-  A  e.  On
Assertion
Ref Expression
onirri  |-  -.  A  e.  A

Proof of Theorem onirri
StepHypRef Expression
1 onirri.1 . . 3  |-  A  e.  On
21onordi 4473 . 2  |-  Ord  A
3 ordirr 4590 . 2  |-  ( Ord 
A  ->  -.  A  e.  A )
42, 3ax-mp 5 1  |-  -.  A  e.  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    e. wcel 2176   Ord word 4409   Oncon0 4410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-setind 4585
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179  df-sn 3639  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415
This theorem is referenced by:  ontri2orexmidim  4620  enpr2d  6911  pm54.43  7298  pw1ne1  7341
  Copyright terms: Public domain W3C validator