![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > onirri | Unicode version |
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
onirri.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
onirri |
![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onirri.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | onordi 4438 |
. 2
![]() ![]() ![]() |
3 | ordirr 4553 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | ax-mp 5 |
1
![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 ax-setind 4548 |
This theorem depends on definitions: df-bi 117 df-3an 981 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-ral 2470 df-rex 2471 df-v 2751 df-dif 3143 df-in 3147 df-ss 3154 df-sn 3610 df-uni 3822 df-tr 4114 df-iord 4378 df-on 4380 |
This theorem is referenced by: ontri2orexmidim 4583 enpr2d 6831 pm54.43 7203 pw1ne1 7242 |
Copyright terms: Public domain | W3C validator |