Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onirri | Unicode version |
Description: An ordinal number is not a member of itself. Theorem 7M(c) of [Enderton] p. 192. (Contributed by NM, 11-Jun-1994.) |
Ref | Expression |
---|---|
onirri.1 |
Ref | Expression |
---|---|
onirri |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | onirri.1 | . . 3 | |
2 | 1 | onordi 4411 | . 2 |
3 | ordirr 4526 | . 2 | |
4 | 2, 3 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wcel 2141 word 4347 con0 4348 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-in 3127 df-ss 3134 df-sn 3589 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 |
This theorem is referenced by: ontri2orexmidim 4556 enpr2d 6795 pm54.43 7167 pw1ne1 7206 |
Copyright terms: Public domain | W3C validator |