ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucexmid Unicode version

Theorem onsucsssucexmid 4450
Description: The converse of onsucsssucr 4433 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Hypothesis
Ref Expression
onsucsssucexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_  suc  y )
Assertion
Ref Expression
onsucsssucexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, x    x, y
Allowed substitution hint:    ph( y)

Proof of Theorem onsucsssucexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3187 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
2 ordtriexmidlem 4443 . . . . . . 7  |-  { z  e.  { (/) }  |  ph }  e.  On
3 sseq1 3125 . . . . . . . . 9  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
4 suceq 4332 . . . . . . . . . 10  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { z  e.  { (/)
}  |  ph }
)
54sseq1d 3131 . . . . . . . . 9  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( suc  x  C_ 
suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } ) )
63, 5imbi12d 233 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x 
C_  { (/) }  ->  suc  x  C_  suc  { (/) } )  <->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  ->  suc 
{ z  e.  { (/)
}  |  ph }  C_ 
suc  { (/) } ) ) )
7 suc0 4341 . . . . . . . . . 10  |-  suc  (/)  =  { (/)
}
8 0elon 4322 . . . . . . . . . . 11  |-  (/)  e.  On
98onsuci 4440 . . . . . . . . . 10  |-  suc  (/)  e.  On
107, 9eqeltrri 2214 . . . . . . . . 9  |-  { (/) }  e.  On
11 p0ex 4120 . . . . . . . . . 10  |-  { (/) }  e.  _V
12 eleq1 2203 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( y  e.  On  <->  { (/) }  e.  On ) )
1312anbi2d 460 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  ( ( x  e.  On  /\  y  e.  On )  <-> 
( x  e.  On  /\ 
{ (/) }  e.  On ) ) )
14 sseq2 3126 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( x  C_  y  <->  x  C_  { (/) } ) )
15 suceq 4332 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  suc  y  =  suc  { (/)
} )
1615sseq2d 3132 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( suc  x  C_  suc  y 
<->  suc  x  C_  suc  {
(/) } ) )
1714, 16imbi12d 233 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  ( ( x  C_  y  ->  suc  x  C_  suc  y )  <->  ( x  C_ 
{ (/) }  ->  suc  x  C_  suc  { (/) } ) ) )
1813, 17imbi12d 233 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  ( ( ( x  e.  On  /\  y  e.  On )  ->  (
x  C_  y  ->  suc  x  C_  suc  y ) )  <->  ( ( x  e.  On  /\  { (/)
}  e.  On )  ->  ( x  C_  {
(/) }  ->  suc  x  C_ 
suc  { (/) } ) ) ) )
19 onsucsssucexmid.1 . . . . . . . . . . 11  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_  suc  y )
2019rspec2 2524 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  C_  y  ->  suc  x  C_  suc  y ) )
2111, 18, 20vtocl 2743 . . . . . . . . 9  |-  ( ( x  e.  On  /\  {
(/) }  e.  On )  ->  ( x  C_  {
(/) }  ->  suc  x  C_ 
suc  { (/) } ) )
2210, 21mpan2 422 . . . . . . . 8  |-  ( x  e.  On  ->  (
x  C_  { (/) }  ->  suc  x  C_  suc  { (/) } ) )
236, 22vtoclga 2755 . . . . . . 7  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  ->  suc 
{ z  e.  { (/)
}  |  ph }  C_ 
suc  { (/) } ) )
242, 23ax-mp 5 . . . . . 6  |-  ( { z  e.  { (/) }  |  ph }  C_  {
(/) }  ->  suc  {
z  e.  { (/) }  |  ph }  C_  suc  { (/) } )
251, 24ax-mp 5 . . . . 5  |-  suc  {
z  e.  { (/) }  |  ph }  C_  suc  { (/) }
2610onsuci 4440 . . . . . . 7  |-  suc  { (/)
}  e.  On
2726onordi 4356 . . . . . 6  |-  Ord  suc  {
(/) }
28 ordelsuc 4429 . . . . . 6  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  On  /\  Ord  suc  {
(/) } )  ->  ( { z  e.  { (/)
}  |  ph }  e.  suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } ) )
292, 27, 28mp2an 423 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } )
3025, 29mpbir 145 . . . 4  |-  { z  e.  { (/) }  |  ph }  e.  suc  { (/)
}
31 elsucg 4334 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/)
}  <->  ( { z  e.  { (/) }  |  ph }  e.  { (/) }  \/  { z  e. 
{ (/) }  |  ph }  =  { (/) } ) ) )
322, 31ax-mp 5 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/) }  <->  ( {
z  e.  { (/) }  |  ph }  e.  {
(/) }  \/  { z  e.  { (/) }  |  ph }  =  { (/) } ) )
3330, 32mpbi 144 . . 3  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  \/  { z  e.  { (/) }  |  ph }  =  { (/) } )
34 elsni 3550 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  ->  { z  e.  { (/) }  |  ph }  =  (/) )
35 ordtriexmidlem2 4444 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
3634, 35syl 14 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  ->  -.  ph )
37 0ex 4063 . . . . 5  |-  (/)  e.  _V
38 biidd 171 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3937, 38rabsnt 3606 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  { (/) }  ->  ph )
4036, 39orim12i 749 . . 3  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  { (/) }  \/  {
z  e.  { (/) }  |  ph }  =  { (/) } )  -> 
( -.  ph  \/  ph ) )
4133, 40ax-mp 5 . 2  |-  ( -. 
ph  \/  ph )
42 orcom 718 . 2  |-  ( ( -.  ph  \/  ph )  <->  (
ph  \/  -.  ph )
)
4341, 42mpbi 144 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   A.wral 2417   {crab 2421    C_ wss 3076   (/)c0 3368   {csn 3532   Ord word 4292   Oncon0 4293   suc csuc 4295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-uni 3745  df-tr 4035  df-iord 4296  df-on 4298  df-suc 4301
This theorem is referenced by:  oawordriexmid  6374
  Copyright terms: Public domain W3C validator