| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucsssucexmid | Unicode version | ||
| Description: The converse of onsucsssucr 4555 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
| Ref | Expression |
|---|---|
| onsucsssucexmid.1 |
|
| Ref | Expression |
|---|---|
| onsucsssucexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 3277 |
. . . . . 6
| |
| 2 | ordtriexmidlem 4565 |
. . . . . . 7
| |
| 3 | sseq1 3215 |
. . . . . . . . 9
| |
| 4 | suceq 4447 |
. . . . . . . . . 10
| |
| 5 | 4 | sseq1d 3221 |
. . . . . . . . 9
|
| 6 | 3, 5 | imbi12d 234 |
. . . . . . . 8
|
| 7 | suc0 4456 |
. . . . . . . . . 10
| |
| 8 | 0elon 4437 |
. . . . . . . . . . 11
| |
| 9 | 8 | onsuci 4562 |
. . . . . . . . . 10
|
| 10 | 7, 9 | eqeltrri 2278 |
. . . . . . . . 9
|
| 11 | p0ex 4231 |
. . . . . . . . . 10
| |
| 12 | eleq1 2267 |
. . . . . . . . . . . 12
| |
| 13 | 12 | anbi2d 464 |
. . . . . . . . . . 11
|
| 14 | sseq2 3216 |
. . . . . . . . . . . 12
| |
| 15 | suceq 4447 |
. . . . . . . . . . . . 13
| |
| 16 | 15 | sseq2d 3222 |
. . . . . . . . . . . 12
|
| 17 | 14, 16 | imbi12d 234 |
. . . . . . . . . . 11
|
| 18 | 13, 17 | imbi12d 234 |
. . . . . . . . . 10
|
| 19 | onsucsssucexmid.1 |
. . . . . . . . . . 11
| |
| 20 | 19 | rspec2 2594 |
. . . . . . . . . 10
|
| 21 | 11, 18, 20 | vtocl 2826 |
. . . . . . . . 9
|
| 22 | 10, 21 | mpan2 425 |
. . . . . . . 8
|
| 23 | 6, 22 | vtoclga 2838 |
. . . . . . 7
|
| 24 | 2, 23 | ax-mp 5 |
. . . . . 6
|
| 25 | 1, 24 | ax-mp 5 |
. . . . 5
|
| 26 | 10 | onsuci 4562 |
. . . . . . 7
|
| 27 | 26 | onordi 4471 |
. . . . . 6
|
| 28 | ordelsuc 4551 |
. . . . . 6
| |
| 29 | 2, 27, 28 | mp2an 426 |
. . . . 5
|
| 30 | 25, 29 | mpbir 146 |
. . . 4
|
| 31 | elsucg 4449 |
. . . . 5
| |
| 32 | 2, 31 | ax-mp 5 |
. . . 4
|
| 33 | 30, 32 | mpbi 145 |
. . 3
|
| 34 | elsni 3650 |
. . . . 5
| |
| 35 | ordtriexmidlem2 4566 |
. . . . 5
| |
| 36 | 34, 35 | syl 14 |
. . . 4
|
| 37 | 0ex 4170 |
. . . . 5
| |
| 38 | biidd 172 |
. . . . 5
| |
| 39 | 37, 38 | rabsnt 3707 |
. . . 4
|
| 40 | 36, 39 | orim12i 760 |
. . 3
|
| 41 | 33, 40 | ax-mp 5 |
. 2
|
| 42 | orcom 729 |
. 2
| |
| 43 | 41, 42 | mpbi 145 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-tr 4142 df-iord 4411 df-on 4413 df-suc 4416 |
| This theorem is referenced by: oawordriexmid 6546 |
| Copyright terms: Public domain | W3C validator |