Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucsssucexmid | Unicode version |
Description: The converse of onsucsssucr 4486 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
Ref | Expression |
---|---|
onsucsssucexmid.1 |
Ref | Expression |
---|---|
onsucsssucexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3227 | . . . . . 6 | |
2 | ordtriexmidlem 4496 | . . . . . . 7 | |
3 | sseq1 3165 | . . . . . . . . 9 | |
4 | suceq 4380 | . . . . . . . . . 10 | |
5 | 4 | sseq1d 3171 | . . . . . . . . 9 |
6 | 3, 5 | imbi12d 233 | . . . . . . . 8 |
7 | suc0 4389 | . . . . . . . . . 10 | |
8 | 0elon 4370 | . . . . . . . . . . 11 | |
9 | 8 | onsuci 4493 | . . . . . . . . . 10 |
10 | 7, 9 | eqeltrri 2240 | . . . . . . . . 9 |
11 | p0ex 4167 | . . . . . . . . . 10 | |
12 | eleq1 2229 | . . . . . . . . . . . 12 | |
13 | 12 | anbi2d 460 | . . . . . . . . . . 11 |
14 | sseq2 3166 | . . . . . . . . . . . 12 | |
15 | suceq 4380 | . . . . . . . . . . . . 13 | |
16 | 15 | sseq2d 3172 | . . . . . . . . . . . 12 |
17 | 14, 16 | imbi12d 233 | . . . . . . . . . . 11 |
18 | 13, 17 | imbi12d 233 | . . . . . . . . . 10 |
19 | onsucsssucexmid.1 | . . . . . . . . . . 11 | |
20 | 19 | rspec2 2555 | . . . . . . . . . 10 |
21 | 11, 18, 20 | vtocl 2780 | . . . . . . . . 9 |
22 | 10, 21 | mpan2 422 | . . . . . . . 8 |
23 | 6, 22 | vtoclga 2792 | . . . . . . 7 |
24 | 2, 23 | ax-mp 5 | . . . . . 6 |
25 | 1, 24 | ax-mp 5 | . . . . 5 |
26 | 10 | onsuci 4493 | . . . . . . 7 |
27 | 26 | onordi 4404 | . . . . . 6 |
28 | ordelsuc 4482 | . . . . . 6 | |
29 | 2, 27, 28 | mp2an 423 | . . . . 5 |
30 | 25, 29 | mpbir 145 | . . . 4 |
31 | elsucg 4382 | . . . . 5 | |
32 | 2, 31 | ax-mp 5 | . . . 4 |
33 | 30, 32 | mpbi 144 | . . 3 |
34 | elsni 3594 | . . . . 5 | |
35 | ordtriexmidlem2 4497 | . . . . 5 | |
36 | 34, 35 | syl 14 | . . . 4 |
37 | 0ex 4109 | . . . . 5 | |
38 | biidd 171 | . . . . 5 | |
39 | 37, 38 | rabsnt 3651 | . . . 4 |
40 | 36, 39 | orim12i 749 | . . 3 |
41 | 33, 40 | ax-mp 5 | . 2 |
42 | orcom 718 | . 2 | |
43 | 41, 42 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wral 2444 crab 2448 wss 3116 c0 3409 csn 3576 word 4340 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: oawordriexmid 6438 |
Copyright terms: Public domain | W3C validator |