Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > onsucsssucexmid | Unicode version |
Description: The converse of onsucsssucr 4493 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) |
Ref | Expression |
---|---|
onsucsssucexmid.1 |
Ref | Expression |
---|---|
onsucsssucexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 3232 | . . . . . 6 | |
2 | ordtriexmidlem 4503 | . . . . . . 7 | |
3 | sseq1 3170 | . . . . . . . . 9 | |
4 | suceq 4387 | . . . . . . . . . 10 | |
5 | 4 | sseq1d 3176 | . . . . . . . . 9 |
6 | 3, 5 | imbi12d 233 | . . . . . . . 8 |
7 | suc0 4396 | . . . . . . . . . 10 | |
8 | 0elon 4377 | . . . . . . . . . . 11 | |
9 | 8 | onsuci 4500 | . . . . . . . . . 10 |
10 | 7, 9 | eqeltrri 2244 | . . . . . . . . 9 |
11 | p0ex 4174 | . . . . . . . . . 10 | |
12 | eleq1 2233 | . . . . . . . . . . . 12 | |
13 | 12 | anbi2d 461 | . . . . . . . . . . 11 |
14 | sseq2 3171 | . . . . . . . . . . . 12 | |
15 | suceq 4387 | . . . . . . . . . . . . 13 | |
16 | 15 | sseq2d 3177 | . . . . . . . . . . . 12 |
17 | 14, 16 | imbi12d 233 | . . . . . . . . . . 11 |
18 | 13, 17 | imbi12d 233 | . . . . . . . . . 10 |
19 | onsucsssucexmid.1 | . . . . . . . . . . 11 | |
20 | 19 | rspec2 2559 | . . . . . . . . . 10 |
21 | 11, 18, 20 | vtocl 2784 | . . . . . . . . 9 |
22 | 10, 21 | mpan2 423 | . . . . . . . 8 |
23 | 6, 22 | vtoclga 2796 | . . . . . . 7 |
24 | 2, 23 | ax-mp 5 | . . . . . 6 |
25 | 1, 24 | ax-mp 5 | . . . . 5 |
26 | 10 | onsuci 4500 | . . . . . . 7 |
27 | 26 | onordi 4411 | . . . . . 6 |
28 | ordelsuc 4489 | . . . . . 6 | |
29 | 2, 27, 28 | mp2an 424 | . . . . 5 |
30 | 25, 29 | mpbir 145 | . . . 4 |
31 | elsucg 4389 | . . . . 5 | |
32 | 2, 31 | ax-mp 5 | . . . 4 |
33 | 30, 32 | mpbi 144 | . . 3 |
34 | elsni 3601 | . . . . 5 | |
35 | ordtriexmidlem2 4504 | . . . . 5 | |
36 | 34, 35 | syl 14 | . . . 4 |
37 | 0ex 4116 | . . . . 5 | |
38 | biidd 171 | . . . . 5 | |
39 | 37, 38 | rabsnt 3658 | . . . 4 |
40 | 36, 39 | orim12i 754 | . . 3 |
41 | 33, 40 | ax-mp 5 | . 2 |
42 | orcom 723 | . 2 | |
43 | 41, 42 | mpbi 144 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wral 2448 crab 2452 wss 3121 c0 3414 csn 3583 word 4347 con0 4348 csuc 4350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-tr 4088 df-iord 4351 df-on 4353 df-suc 4356 |
This theorem is referenced by: oawordriexmid 6449 |
Copyright terms: Public domain | W3C validator |