ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucsssucexmid Unicode version

Theorem onsucsssucexmid 4563
Description: The converse of onsucsssucr 4545 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.)
Hypothesis
Ref Expression
onsucsssucexmid.1  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_  suc  y )
Assertion
Ref Expression
onsucsssucexmid  |-  ( ph  \/  -.  ph )
Distinct variable groups:    ph, x    x, y
Allowed substitution hint:    ph( y)

Proof of Theorem onsucsssucexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3268 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
2 ordtriexmidlem 4555 . . . . . . 7  |-  { z  e.  { (/) }  |  ph }  e.  On
3 sseq1 3206 . . . . . . . . 9  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( x  C_  {
(/) }  <->  { z  e.  { (/)
}  |  ph }  C_ 
{ (/) } ) )
4 suceq 4437 . . . . . . . . . 10  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  suc  x  =  suc  { z  e.  { (/)
}  |  ph }
)
54sseq1d 3212 . . . . . . . . 9  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( suc  x  C_ 
suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } ) )
63, 5imbi12d 234 . . . . . . . 8  |-  ( x  =  { z  e. 
{ (/) }  |  ph }  ->  ( ( x 
C_  { (/) }  ->  suc  x  C_  suc  { (/) } )  <->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  ->  suc 
{ z  e.  { (/)
}  |  ph }  C_ 
suc  { (/) } ) ) )
7 suc0 4446 . . . . . . . . . 10  |-  suc  (/)  =  { (/)
}
8 0elon 4427 . . . . . . . . . . 11  |-  (/)  e.  On
98onsuci 4552 . . . . . . . . . 10  |-  suc  (/)  e.  On
107, 9eqeltrri 2270 . . . . . . . . 9  |-  { (/) }  e.  On
11 p0ex 4221 . . . . . . . . . 10  |-  { (/) }  e.  _V
12 eleq1 2259 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( y  e.  On  <->  { (/) }  e.  On ) )
1312anbi2d 464 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  ( ( x  e.  On  /\  y  e.  On )  <-> 
( x  e.  On  /\ 
{ (/) }  e.  On ) ) )
14 sseq2 3207 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( x  C_  y  <->  x  C_  { (/) } ) )
15 suceq 4437 . . . . . . . . . . . . 13  |-  ( y  =  { (/) }  ->  suc  y  =  suc  { (/)
} )
1615sseq2d 3213 . . . . . . . . . . . 12  |-  ( y  =  { (/) }  ->  ( suc  x  C_  suc  y 
<->  suc  x  C_  suc  {
(/) } ) )
1714, 16imbi12d 234 . . . . . . . . . . 11  |-  ( y  =  { (/) }  ->  ( ( x  C_  y  ->  suc  x  C_  suc  y )  <->  ( x  C_ 
{ (/) }  ->  suc  x  C_  suc  { (/) } ) ) )
1813, 17imbi12d 234 . . . . . . . . . 10  |-  ( y  =  { (/) }  ->  ( ( ( x  e.  On  /\  y  e.  On )  ->  (
x  C_  y  ->  suc  x  C_  suc  y ) )  <->  ( ( x  e.  On  /\  { (/)
}  e.  On )  ->  ( x  C_  {
(/) }  ->  suc  x  C_ 
suc  { (/) } ) ) ) )
19 onsucsssucexmid.1 . . . . . . . . . . 11  |-  A. x  e.  On  A. y  e.  On  ( x  C_  y  ->  suc  x  C_  suc  y )
2019rspec2 2586 . . . . . . . . . 10  |-  ( ( x  e.  On  /\  y  e.  On )  ->  ( x  C_  y  ->  suc  x  C_  suc  y ) )
2111, 18, 20vtocl 2818 . . . . . . . . 9  |-  ( ( x  e.  On  /\  {
(/) }  e.  On )  ->  ( x  C_  {
(/) }  ->  suc  x  C_ 
suc  { (/) } ) )
2210, 21mpan2 425 . . . . . . . 8  |-  ( x  e.  On  ->  (
x  C_  { (/) }  ->  suc  x  C_  suc  { (/) } ) )
236, 22vtoclga 2830 . . . . . . 7  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  C_  { (/) }  ->  suc 
{ z  e.  { (/)
}  |  ph }  C_ 
suc  { (/) } ) )
242, 23ax-mp 5 . . . . . 6  |-  ( { z  e.  { (/) }  |  ph }  C_  {
(/) }  ->  suc  {
z  e.  { (/) }  |  ph }  C_  suc  { (/) } )
251, 24ax-mp 5 . . . . 5  |-  suc  {
z  e.  { (/) }  |  ph }  C_  suc  { (/) }
2610onsuci 4552 . . . . . . 7  |-  suc  { (/)
}  e.  On
2726onordi 4461 . . . . . 6  |-  Ord  suc  {
(/) }
28 ordelsuc 4541 . . . . . 6  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  On  /\  Ord  suc  {
(/) } )  ->  ( { z  e.  { (/)
}  |  ph }  e.  suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } ) )
292, 27, 28mp2an 426 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/) }  <->  suc  { z  e.  { (/) }  |  ph }  C_  suc  { (/) } )
3025, 29mpbir 146 . . . 4  |-  { z  e.  { (/) }  |  ph }  e.  suc  { (/)
}
31 elsucg 4439 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  On  ->  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/)
}  <->  ( { z  e.  { (/) }  |  ph }  e.  { (/) }  \/  { z  e. 
{ (/) }  |  ph }  =  { (/) } ) ) )
322, 31ax-mp 5 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  suc  { (/) }  <->  ( {
z  e.  { (/) }  |  ph }  e.  {
(/) }  \/  { z  e.  { (/) }  |  ph }  =  { (/) } ) )
3330, 32mpbi 145 . . 3  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  \/  { z  e.  { (/) }  |  ph }  =  { (/) } )
34 elsni 3640 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  ->  { z  e.  { (/) }  |  ph }  =  (/) )
35 ordtriexmidlem2 4556 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  =  (/) 
->  -.  ph )
3634, 35syl 14 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  e.  {
(/) }  ->  -.  ph )
37 0ex 4160 . . . . 5  |-  (/)  e.  _V
38 biidd 172 . . . . 5  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
3937, 38rabsnt 3697 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  =  { (/) }  ->  ph )
4036, 39orim12i 760 . . 3  |-  ( ( { z  e.  { (/)
}  |  ph }  e.  { (/) }  \/  {
z  e.  { (/) }  |  ph }  =  { (/) } )  -> 
( -.  ph  \/  ph ) )
4133, 40ax-mp 5 . 2  |-  ( -. 
ph  \/  ph )
42 orcom 729 . 2  |-  ( ( -.  ph  \/  ph )  <->  (
ph  \/  -.  ph )
)
4341, 42mpbi 145 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479    C_ wss 3157   (/)c0 3450   {csn 3622   Ord word 4397   Oncon0 4398   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  oawordriexmid  6528
  Copyright terms: Public domain W3C validator