| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > onsucsssucexmid | Unicode version | ||
| Description: The converse of onsucsssucr 4545 implies excluded middle. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2019.) | 
| Ref | Expression | 
|---|---|
| onsucsssucexmid.1 | 
 | 
| Ref | Expression | 
|---|---|
| onsucsssucexmid | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 3268 | 
. . . . . 6
 | |
| 2 | ordtriexmidlem 4555 | 
. . . . . . 7
 | |
| 3 | sseq1 3206 | 
. . . . . . . . 9
 | |
| 4 | suceq 4437 | 
. . . . . . . . . 10
 | |
| 5 | 4 | sseq1d 3212 | 
. . . . . . . . 9
 | 
| 6 | 3, 5 | imbi12d 234 | 
. . . . . . . 8
 | 
| 7 | suc0 4446 | 
. . . . . . . . . 10
 | |
| 8 | 0elon 4427 | 
. . . . . . . . . . 11
 | |
| 9 | 8 | onsuci 4552 | 
. . . . . . . . . 10
 | 
| 10 | 7, 9 | eqeltrri 2270 | 
. . . . . . . . 9
 | 
| 11 | p0ex 4221 | 
. . . . . . . . . 10
 | |
| 12 | eleq1 2259 | 
. . . . . . . . . . . 12
 | |
| 13 | 12 | anbi2d 464 | 
. . . . . . . . . . 11
 | 
| 14 | sseq2 3207 | 
. . . . . . . . . . . 12
 | |
| 15 | suceq 4437 | 
. . . . . . . . . . . . 13
 | |
| 16 | 15 | sseq2d 3213 | 
. . . . . . . . . . . 12
 | 
| 17 | 14, 16 | imbi12d 234 | 
. . . . . . . . . . 11
 | 
| 18 | 13, 17 | imbi12d 234 | 
. . . . . . . . . 10
 | 
| 19 | onsucsssucexmid.1 | 
. . . . . . . . . . 11
 | |
| 20 | 19 | rspec2 2586 | 
. . . . . . . . . 10
 | 
| 21 | 11, 18, 20 | vtocl 2818 | 
. . . . . . . . 9
 | 
| 22 | 10, 21 | mpan2 425 | 
. . . . . . . 8
 | 
| 23 | 6, 22 | vtoclga 2830 | 
. . . . . . 7
 | 
| 24 | 2, 23 | ax-mp 5 | 
. . . . . 6
 | 
| 25 | 1, 24 | ax-mp 5 | 
. . . . 5
 | 
| 26 | 10 | onsuci 4552 | 
. . . . . . 7
 | 
| 27 | 26 | onordi 4461 | 
. . . . . 6
 | 
| 28 | ordelsuc 4541 | 
. . . . . 6
 | |
| 29 | 2, 27, 28 | mp2an 426 | 
. . . . 5
 | 
| 30 | 25, 29 | mpbir 146 | 
. . . 4
 | 
| 31 | elsucg 4439 | 
. . . . 5
 | |
| 32 | 2, 31 | ax-mp 5 | 
. . . 4
 | 
| 33 | 30, 32 | mpbi 145 | 
. . 3
 | 
| 34 | elsni 3640 | 
. . . . 5
 | |
| 35 | ordtriexmidlem2 4556 | 
. . . . 5
 | |
| 36 | 34, 35 | syl 14 | 
. . . 4
 | 
| 37 | 0ex 4160 | 
. . . . 5
 | |
| 38 | biidd 172 | 
. . . . 5
 | |
| 39 | 37, 38 | rabsnt 3697 | 
. . . 4
 | 
| 40 | 36, 39 | orim12i 760 | 
. . 3
 | 
| 41 | 33, 40 | ax-mp 5 | 
. 2
 | 
| 42 | orcom 729 | 
. 2
 | |
| 43 | 41, 42 | mpbi 145 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-uni 3840 df-tr 4132 df-iord 4401 df-on 4403 df-suc 4406 | 
| This theorem is referenced by: oawordriexmid 6528 | 
| Copyright terms: Public domain | W3C validator |