ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelsuc Unicode version

Theorem ordelsuc 4522
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 4521 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
21adantl 277 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
3 sucssel 4442 . . 3  |-  ( A  e.  C  ->  ( suc  A  C_  B  ->  A  e.  B ) )
43adantr 276 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( suc  A  C_  B  ->  A  e.  B ) )
52, 4impbid 129 1  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2160    C_ wss 3144   Ord word 4380   suc csuc 4383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-sn 3613  df-uni 3825  df-tr 4117  df-iord 4384  df-suc 4389
This theorem is referenced by:  onsucssi  4523  onsucmin  4524  onsucelsucr  4525  onsucsssucr  4526  onsucsssucexmid  4544  frecsuclem  6431  ordgt0ge1  6460  nnsucsssuc  6517  ennnfonelemk  12451  nninfsellemeq  15225
  Copyright terms: Public domain W3C validator