ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelsuc Unicode version

Theorem ordelsuc 4538
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 4537 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
21adantl 277 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
3 sucssel 4456 . . 3  |-  ( A  e.  C  ->  ( suc  A  C_  B  ->  A  e.  B ) )
43adantr 276 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( suc  A  C_  B  ->  A  e.  B ) )
52, 4impbid 129 1  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2164    C_ wss 3154   Ord word 4394   suc csuc 4397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-sn 3625  df-uni 3837  df-tr 4129  df-iord 4398  df-suc 4403
This theorem is referenced by:  onsucssi  4539  onsucmin  4540  onsucelsucr  4541  onsucsssucr  4542  onsucsssucexmid  4560  frecsuclem  6461  ordgt0ge1  6490  nnsucsssuc  6547  ennnfonelemk  12560  nninfsellemeq  15574
  Copyright terms: Public domain W3C validator