ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ordelsuc Unicode version

Theorem ordelsuc 4542
Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.)
Assertion
Ref Expression
ordelsuc  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )

Proof of Theorem ordelsuc
StepHypRef Expression
1 ordsucss 4541 . . 3  |-  ( Ord 
B  ->  ( A  e.  B  ->  suc  A  C_  B ) )
21adantl 277 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  ->  suc 
A  C_  B )
)
3 sucssel 4460 . . 3  |-  ( A  e.  C  ->  ( suc  A  C_  B  ->  A  e.  B ) )
43adantr 276 . 2  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( suc  A  C_  B  ->  A  e.  B ) )
52, 4impbid 129 1  |-  ( ( A  e.  C  /\  Ord  B )  ->  ( A  e.  B  <->  suc  A  C_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167    C_ wss 3157   Ord word 4398   suc csuc 4401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-sn 3629  df-uni 3841  df-tr 4133  df-iord 4402  df-suc 4407
This theorem is referenced by:  onsucssi  4543  onsucmin  4544  onsucelsucr  4545  onsucsssucr  4546  onsucsssucexmid  4564  frecsuclem  6473  ordgt0ge1  6502  nnsucsssuc  6559  ennnfonelemk  12642  nninfsellemeq  15745
  Copyright terms: Public domain W3C validator