| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ordelsuc | Unicode version | ||
| Description: A set belongs to an ordinal iff its successor is a subset of the ordinal. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 29-Nov-2003.) |
| Ref | Expression |
|---|---|
| ordelsuc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsucss 4596 |
. . 3
| |
| 2 | 1 | adantl 277 |
. 2
|
| 3 | sucssel 4515 |
. . 3
| |
| 4 | 3 | adantr 276 |
. 2
|
| 5 | 2, 4 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-uni 3889 df-tr 4183 df-iord 4457 df-suc 4462 |
| This theorem is referenced by: onsucssi 4598 onsucmin 4599 onsucelsucr 4600 onsucsssucr 4601 onsucsssucexmid 4619 frecsuclem 6552 ordgt0ge1 6581 nnsucsssuc 6638 ennnfonelemk 12971 nninfsellemeq 16380 |
| Copyright terms: Public domain | W3C validator |