| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucssi | GIF version | ||
| Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
| Ref | Expression |
|---|---|
| onsucssi.1 | ⊢ 𝐴 ∈ On |
| onsucssi.2 | ⊢ 𝐵 ∈ On |
| Ref | Expression |
|---|---|
| onsucssi | ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucssi.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onsucssi.2 | . . 3 ⊢ 𝐵 ∈ On | |
| 3 | 2 | onordi 4491 | . 2 ⊢ Ord 𝐵 |
| 4 | ordelsuc 4571 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | |
| 5 | 1, 3, 4 | mp2an 426 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2178 ⊆ wss 3174 Ord word 4427 Oncon0 4428 suc csuc 4430 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-uni 3865 df-tr 4159 df-iord 4431 df-on 4433 df-suc 4436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |