| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onsucssi | GIF version | ||
| Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.) |
| Ref | Expression |
|---|---|
| onsucssi.1 | ⊢ 𝐴 ∈ On |
| onsucssi.2 | ⊢ 𝐵 ∈ On |
| Ref | Expression |
|---|---|
| onsucssi | ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | onsucssi.1 | . 2 ⊢ 𝐴 ∈ On | |
| 2 | onsucssi.2 | . . 3 ⊢ 𝐵 ∈ On | |
| 3 | 2 | onordi 4473 | . 2 ⊢ Ord 𝐵 |
| 4 | ordelsuc 4553 | . 2 ⊢ ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵)) | |
| 5 | 1, 3, 4 | mp2an 426 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ suc 𝐴 ⊆ 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2176 ⊆ wss 3166 Ord word 4409 Oncon0 4410 suc csuc 4412 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-uni 3851 df-tr 4143 df-iord 4413 df-on 4415 df-suc 4418 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |