ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucssi GIF version

Theorem onsucssi 4517
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onsucssi.1 𝐴 ∈ On
onsucssi.2 𝐵 ∈ On
Assertion
Ref Expression
onsucssi (𝐴𝐵 ↔ suc 𝐴𝐵)

Proof of Theorem onsucssi
StepHypRef Expression
1 onsucssi.1 . 2 𝐴 ∈ On
2 onsucssi.2 . . 3 𝐵 ∈ On
32onordi 4438 . 2 Ord 𝐵
4 ordelsuc 4516 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
51, 3, 4mp2an 426 1 (𝐴𝐵 ↔ suc 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2158  wss 3141  Ord word 4374  Oncon0 4375  suc csuc 4377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471  df-v 2751  df-un 3145  df-in 3147  df-ss 3154  df-sn 3610  df-uni 3822  df-tr 4114  df-iord 4378  df-on 4380  df-suc 4383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator