ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucssi GIF version

Theorem onsucssi 4597
Description: A set belongs to an ordinal number iff its successor is a subset of the ordinal number. Exercise 8 of [TakeutiZaring] p. 42 and its converse. (Contributed by NM, 16-Sep-1995.)
Hypotheses
Ref Expression
onsucssi.1 𝐴 ∈ On
onsucssi.2 𝐵 ∈ On
Assertion
Ref Expression
onsucssi (𝐴𝐵 ↔ suc 𝐴𝐵)

Proof of Theorem onsucssi
StepHypRef Expression
1 onsucssi.1 . 2 𝐴 ∈ On
2 onsucssi.2 . . 3 𝐵 ∈ On
32onordi 4516 . 2 Ord 𝐵
4 ordelsuc 4596 . 2 ((𝐴 ∈ On ∧ Ord 𝐵) → (𝐴𝐵 ↔ suc 𝐴𝐵))
51, 3, 4mp2an 426 1 (𝐴𝐵 ↔ suc 𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2200  wss 3197  Ord word 4452  Oncon0 4453  suc csuc 4455
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-uni 3888  df-tr 4182  df-iord 4456  df-on 4458  df-suc 4461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator