ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucmin Unicode version

Theorem onsucmin 4573
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Distinct variable group:    x, A

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 4440 . . . . 5  |-  ( x  e.  On  ->  Ord  x )
2 ordelsuc 4571 . . . . 5  |-  ( ( A  e.  On  /\  Ord  x )  ->  ( A  e.  x  <->  suc  A  C_  x ) )
31, 2sylan2 286 . . . 4  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  e.  x  <->  suc 
A  C_  x )
)
43rabbidva 2764 . . 3  |-  ( A  e.  On  ->  { x  e.  On  |  A  e.  x }  =  {
x  e.  On  |  suc  A  C_  x }
)
54inteqd 3904 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  A  e.  x }  =  |^| { x  e.  On  |  suc  A  C_  x }
)
6 onsucb 4569 . . 3  |-  ( A  e.  On  <->  suc  A  e.  On )
7 intmin 3919 . . 3  |-  ( suc 
A  e.  On  ->  |^|
{ x  e.  On  |  suc  A  C_  x }  =  suc  A )
86, 7sylbi 121 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  suc  A  C_  x }  =  suc  A )
95, 8eqtr2d 2241 1  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   {crab 2490    C_ wss 3174   |^|cint 3899   Ord word 4427   Oncon0 4428   suc csuc 4430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-uni 3865  df-int 3900  df-tr 4159  df-iord 4431  df-on 4433  df-suc 4436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator