ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucmin Unicode version

Theorem onsucmin 4599
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Distinct variable group:    x, A

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 4466 . . . . 5  |-  ( x  e.  On  ->  Ord  x )
2 ordelsuc 4597 . . . . 5  |-  ( ( A  e.  On  /\  Ord  x )  ->  ( A  e.  x  <->  suc  A  C_  x ) )
31, 2sylan2 286 . . . 4  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  e.  x  <->  suc 
A  C_  x )
)
43rabbidva 2787 . . 3  |-  ( A  e.  On  ->  { x  e.  On  |  A  e.  x }  =  {
x  e.  On  |  suc  A  C_  x }
)
54inteqd 3928 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  A  e.  x }  =  |^| { x  e.  On  |  suc  A  C_  x }
)
6 onsucb 4595 . . 3  |-  ( A  e.  On  <->  suc  A  e.  On )
7 intmin 3943 . . 3  |-  ( suc 
A  e.  On  ->  |^|
{ x  e.  On  |  suc  A  C_  x }  =  suc  A )
86, 7sylbi 121 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  suc  A  C_  x }  =  suc  A )
95, 8eqtr2d 2263 1  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   {crab 2512    C_ wss 3197   |^|cint 3923   Ord word 4453   Oncon0 4454   suc csuc 4456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-uni 3889  df-int 3924  df-tr 4183  df-iord 4457  df-on 4459  df-suc 4462
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator