ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucmin Unicode version

Theorem onsucmin 4491
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Distinct variable group:    x, A

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 4360 . . . . 5  |-  ( x  e.  On  ->  Ord  x )
2 ordelsuc 4489 . . . . 5  |-  ( ( A  e.  On  /\  Ord  x )  ->  ( A  e.  x  <->  suc  A  C_  x ) )
31, 2sylan2 284 . . . 4  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  e.  x  <->  suc 
A  C_  x )
)
43rabbidva 2718 . . 3  |-  ( A  e.  On  ->  { x  e.  On  |  A  e.  x }  =  {
x  e.  On  |  suc  A  C_  x }
)
54inteqd 3836 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  A  e.  x }  =  |^| { x  e.  On  |  suc  A  C_  x }
)
6 sucelon 4487 . . 3  |-  ( A  e.  On  <->  suc  A  e.  On )
7 intmin 3851 . . 3  |-  ( suc 
A  e.  On  ->  |^|
{ x  e.  On  |  suc  A  C_  x }  =  suc  A )
86, 7sylbi 120 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  suc  A  C_  x }  =  suc  A )
95, 8eqtr2d 2204 1  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1348    e. wcel 2141   {crab 2452    C_ wss 3121   |^|cint 3831   Ord word 4347   Oncon0 4348   suc csuc 4350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-uni 3797  df-int 3832  df-tr 4088  df-iord 4351  df-on 4353  df-suc 4356
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator