ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onsucmin Unicode version

Theorem onsucmin 4337
Description: The successor of an ordinal number is the smallest larger ordinal number. (Contributed by NM, 28-Nov-2003.)
Assertion
Ref Expression
onsucmin  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Distinct variable group:    x, A

Proof of Theorem onsucmin
StepHypRef Expression
1 eloni 4211 . . . . 5  |-  ( x  e.  On  ->  Ord  x )
2 ordelsuc 4335 . . . . 5  |-  ( ( A  e.  On  /\  Ord  x )  ->  ( A  e.  x  <->  suc  A  C_  x ) )
31, 2sylan2 281 . . . 4  |-  ( ( A  e.  On  /\  x  e.  On )  ->  ( A  e.  x  <->  suc 
A  C_  x )
)
43rabbidva 2608 . . 3  |-  ( A  e.  On  ->  { x  e.  On  |  A  e.  x }  =  {
x  e.  On  |  suc  A  C_  x }
)
54inteqd 3699 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  A  e.  x }  =  |^| { x  e.  On  |  suc  A  C_  x }
)
6 sucelon 4333 . . 3  |-  ( A  e.  On  <->  suc  A  e.  On )
7 intmin 3714 . . 3  |-  ( suc 
A  e.  On  ->  |^|
{ x  e.  On  |  suc  A  C_  x }  =  suc  A )
86, 7sylbi 120 . 2  |-  ( A  e.  On  ->  |^| { x  e.  On  |  suc  A  C_  x }  =  suc  A )
95, 8eqtr2d 2122 1  |-  ( A  e.  On  ->  suc  A  =  |^| { x  e.  On  |  A  e.  x } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1290    e. wcel 1439   {crab 2364    C_ wss 3000   |^|cint 3694   Ord word 4198   Oncon0 4199   suc csuc 4201
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-uni 3660  df-int 3695  df-tr 3943  df-iord 4202  df-on 4204  df-suc 4207
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator