ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuniss2 Unicode version

Theorem onuniss2 4559
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onuniss2  |-  ( A  e.  On  ->  U. {
x  e.  On  |  x  C_  A }  =  A )
Distinct variable group:    x, A

Proof of Theorem onuniss2
StepHypRef Expression
1 unimax 3883 1  |-  ( A  e.  On  ->  U. {
x  e.  On  |  x  C_  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1372    e. wcel 2175   {crab 2487    C_ wss 3165   U.cuni 3849   Oncon0 4409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rab 2492  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator