ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon Unicode version

Theorem unon 4547
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon  |-  U. On  =  On

Proof of Theorem unon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3843 . . . 4  |-  ( x  e.  U. On  <->  E. y  e.  On  x  e.  y )
2 onelon 4419 . . . . 5  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
32rexlimiva 2609 . . . 4  |-  ( E. y  e.  On  x  e.  y  ->  x  e.  On )
41, 3sylbi 121 . . 3  |-  ( x  e.  U. On  ->  x  e.  On )
5 vex 2766 . . . . 5  |-  x  e. 
_V
65sucid 4452 . . . 4  |-  x  e. 
suc  x
7 onsuc 4537 . . . 4  |-  ( x  e.  On  ->  suc  x  e.  On )
8 elunii 3844 . . . 4  |-  ( ( x  e.  suc  x  /\  suc  x  e.  On )  ->  x  e.  U. On )
96, 7, 8sylancr 414 . . 3  |-  ( x  e.  On  ->  x  e.  U. On )
104, 9impbii 126 . 2  |-  ( x  e.  U. On  <->  x  e.  On )
1110eqriv 2193 1  |-  U. On  =  On
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   E.wrex 2476   U.cuni 3839   Oncon0 4398   suc csuc 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-uni 3840  df-tr 4132  df-iord 4401  df-on 4403  df-suc 4406
This theorem is referenced by:  limon  4549  onintonm  4553  tfri1dALT  6409  rdgon  6444
  Copyright terms: Public domain W3C validator