ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon Unicode version

Theorem unon 4559
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon  |-  U. On  =  On

Proof of Theorem unon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3854 . . . 4  |-  ( x  e.  U. On  <->  E. y  e.  On  x  e.  y )
2 onelon 4431 . . . . 5  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
32rexlimiva 2618 . . . 4  |-  ( E. y  e.  On  x  e.  y  ->  x  e.  On )
41, 3sylbi 121 . . 3  |-  ( x  e.  U. On  ->  x  e.  On )
5 vex 2775 . . . . 5  |-  x  e. 
_V
65sucid 4464 . . . 4  |-  x  e. 
suc  x
7 onsuc 4549 . . . 4  |-  ( x  e.  On  ->  suc  x  e.  On )
8 elunii 3855 . . . 4  |-  ( ( x  e.  suc  x  /\  suc  x  e.  On )  ->  x  e.  U. On )
96, 7, 8sylancr 414 . . 3  |-  ( x  e.  On  ->  x  e.  U. On )
104, 9impbii 126 . 2  |-  ( x  e.  U. On  <->  x  e.  On )
1110eqriv 2202 1  |-  U. On  =  On
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   E.wrex 2485   U.cuni 3850   Oncon0 4410   suc csuc 4412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-uni 3851  df-tr 4143  df-iord 4413  df-on 4415  df-suc 4418
This theorem is referenced by:  limon  4561  onintonm  4565  tfri1dALT  6437  rdgon  6472
  Copyright terms: Public domain W3C validator