ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon Unicode version

Theorem unon 4488
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon  |-  U. On  =  On

Proof of Theorem unon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3793 . . . 4  |-  ( x  e.  U. On  <->  E. y  e.  On  x  e.  y )
2 onelon 4362 . . . . 5  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
32rexlimiva 2578 . . . 4  |-  ( E. y  e.  On  x  e.  y  ->  x  e.  On )
41, 3sylbi 120 . . 3  |-  ( x  e.  U. On  ->  x  e.  On )
5 vex 2729 . . . . 5  |-  x  e. 
_V
65sucid 4395 . . . 4  |-  x  e. 
suc  x
7 suceloni 4478 . . . 4  |-  ( x  e.  On  ->  suc  x  e.  On )
8 elunii 3794 . . . 4  |-  ( ( x  e.  suc  x  /\  suc  x  e.  On )  ->  x  e.  U. On )
96, 7, 8sylancr 411 . . 3  |-  ( x  e.  On  ->  x  e.  U. On )
104, 9impbii 125 . 2  |-  ( x  e.  U. On  <->  x  e.  On )
1110eqriv 2162 1  |-  U. On  =  On
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   E.wrex 2445   U.cuni 3789   Oncon0 4341   suc csuc 4343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-uni 3790  df-tr 4081  df-iord 4344  df-on 4346  df-suc 4349
This theorem is referenced by:  limon  4490  onintonm  4494  tfri1dALT  6319  rdgon  6354
  Copyright terms: Public domain W3C validator