Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unon | Unicode version |
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
Ref | Expression |
---|---|
unon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 3809 | . . . 4 | |
2 | onelon 4378 | . . . . 5 | |
3 | 2 | rexlimiva 2587 | . . . 4 |
4 | 1, 3 | sylbi 121 | . . 3 |
5 | vex 2738 | . . . . 5 | |
6 | 5 | sucid 4411 | . . . 4 |
7 | suceloni 4494 | . . . 4 | |
8 | elunii 3810 | . . . 4 | |
9 | 6, 7, 8 | sylancr 414 | . . 3 |
10 | 4, 9 | impbii 126 | . 2 |
11 | 10 | eqriv 2172 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1353 wcel 2146 wrex 2454 cuni 3805 con0 4357 csuc 4359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-uni 3806 df-tr 4097 df-iord 4360 df-on 4362 df-suc 4365 |
This theorem is referenced by: limon 4506 onintonm 4510 tfri1dALT 6342 rdgon 6377 |
Copyright terms: Public domain | W3C validator |