Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unon | Unicode version |
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.) |
Ref | Expression |
---|---|
unon |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni2 3793 | . . . 4 | |
2 | onelon 4362 | . . . . 5 | |
3 | 2 | rexlimiva 2578 | . . . 4 |
4 | 1, 3 | sylbi 120 | . . 3 |
5 | vex 2729 | . . . . 5 | |
6 | 5 | sucid 4395 | . . . 4 |
7 | suceloni 4478 | . . . 4 | |
8 | elunii 3794 | . . . 4 | |
9 | 6, 7, 8 | sylancr 411 | . . 3 |
10 | 4, 9 | impbii 125 | . 2 |
11 | 10 | eqriv 2162 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 wcel 2136 wrex 2445 cuni 3789 con0 4341 csuc 4343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-tr 4081 df-iord 4344 df-on 4346 df-suc 4349 |
This theorem is referenced by: limon 4490 onintonm 4494 tfri1dALT 6319 rdgon 6354 |
Copyright terms: Public domain | W3C validator |