ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unon Unicode version

Theorem unon 4504
Description: The class of all ordinal numbers is its own union. Exercise 11 of [TakeutiZaring] p. 40. (Contributed by NM, 12-Nov-2003.)
Assertion
Ref Expression
unon  |-  U. On  =  On

Proof of Theorem unon
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 3809 . . . 4  |-  ( x  e.  U. On  <->  E. y  e.  On  x  e.  y )
2 onelon 4378 . . . . 5  |-  ( ( y  e.  On  /\  x  e.  y )  ->  x  e.  On )
32rexlimiva 2587 . . . 4  |-  ( E. y  e.  On  x  e.  y  ->  x  e.  On )
41, 3sylbi 121 . . 3  |-  ( x  e.  U. On  ->  x  e.  On )
5 vex 2738 . . . . 5  |-  x  e. 
_V
65sucid 4411 . . . 4  |-  x  e. 
suc  x
7 suceloni 4494 . . . 4  |-  ( x  e.  On  ->  suc  x  e.  On )
8 elunii 3810 . . . 4  |-  ( ( x  e.  suc  x  /\  suc  x  e.  On )  ->  x  e.  U. On )
96, 7, 8sylancr 414 . . 3  |-  ( x  e.  On  ->  x  e.  U. On )
104, 9impbii 126 . 2  |-  ( x  e.  U. On  <->  x  e.  On )
1110eqriv 2172 1  |-  U. On  =  On
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2146   E.wrex 2454   U.cuni 3805   Oncon0 4357   suc csuc 4359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-uni 3806  df-tr 4097  df-iord 4360  df-on 4362  df-suc 4365
This theorem is referenced by:  limon  4506  onintonm  4510  tfri1dALT  6342  rdgon  6377
  Copyright terms: Public domain W3C validator