| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > onuniss2 | GIF version | ||
| Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.) |
| Ref | Expression |
|---|---|
| onuniss2 | ⊢ (𝐴 ∈ On → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unimax 3887 | 1 ⊢ (𝐴 ∈ On → ∪ {𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴} = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 {crab 2489 ⊆ wss 3168 ∪ cuni 3853 Oncon0 4415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-in 3174 df-ss 3181 df-uni 3854 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |