ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  onuniss2 GIF version

Theorem onuniss2 4565
Description: The union of the ordinal subsets of an ordinal number is that number. (Contributed by Jim Kingdon, 2-Aug-2019.)
Assertion
Ref Expression
onuniss2 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem onuniss2
StepHypRef Expression
1 unimax 3887 1 (𝐴 ∈ On → {𝑥 ∈ On ∣ 𝑥𝐴} = 𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  {crab 2489  wss 3168   cuni 3853  Oncon0 4415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-in 3174  df-ss 3181  df-uni 3854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator