ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limon Unicode version

Theorem limon 4550
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon  |-  Lim  On

Proof of Theorem limon
StepHypRef Expression
1 ordon 4523 . 2  |-  Ord  On
2 0elon 4428 . 2  |-  (/)  e.  On
3 unon 4548 . . 3  |-  U. On  =  On
43eqcomi 2200 . 2  |-  On  =  U. On
5 dflim2 4406 . 2  |-  ( Lim 
On 
<->  ( Ord  On  /\  (/) 
e.  On  /\  On  =  U. On ) )
61, 2, 4, 5mpbir3an 1181 1  |-  Lim  On
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   (/)c0 3451   U.cuni 3840   Ord word 4398   Oncon0 4399   Lim wlim 4400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-uni 3841  df-tr 4133  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator