ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limon Unicode version

Theorem limon 4512
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon  |-  Lim  On

Proof of Theorem limon
StepHypRef Expression
1 ordon 4485 . 2  |-  Ord  On
2 0elon 4392 . 2  |-  (/)  e.  On
3 unon 4510 . . 3  |-  U. On  =  On
43eqcomi 2181 . 2  |-  On  =  U. On
5 dflim2 4370 . 2  |-  ( Lim 
On 
<->  ( Ord  On  /\  (/) 
e.  On  /\  On  =  U. On ) )
61, 2, 4, 5mpbir3an 1179 1  |-  Lim  On
Colors of variables: wff set class
Syntax hints:    = wceq 1353    e. wcel 2148   (/)c0 3422   U.cuni 3809   Ord word 4362   Oncon0 4363   Lim wlim 4364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4121  ax-nul 4129  ax-pow 4174  ax-pr 4209  ax-un 4433
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3577  df-sn 3598  df-pr 3599  df-uni 3810  df-tr 4102  df-iord 4366  df-on 4368  df-ilim 4369  df-suc 4371
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator