Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unimax | Unicode version |
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unimax |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3162 | . . 3 | |
2 | sseq1 3165 | . . . 4 | |
3 | 2 | elrab3 2883 | . . 3 |
4 | 1, 3 | mpbiri 167 | . 2 |
5 | sseq1 3165 | . . . . 5 | |
6 | 5 | elrab 2882 | . . . 4 |
7 | 6 | simprbi 273 | . . 3 |
8 | 7 | rgen 2519 | . 2 |
9 | ssunieq 3822 | . . 3 | |
10 | 9 | eqcomd 2171 | . 2 |
11 | 4, 8, 10 | sylancl 410 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 wral 2444 crab 2448 wss 3116 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: onuniss2 4489 |
Copyright terms: Public domain | W3C validator |