Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  unimax Unicode version

Theorem unimax 3765
 Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax
Distinct variable groups:   ,   ,

Proof of Theorem unimax
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ssid 3112 . . 3
2 sseq1 3115 . . . 4
32elrab3 2836 . . 3
41, 3mpbiri 167 . 2
5 sseq1 3115 . . . . 5
65elrab 2835 . . . 4
76simprbi 273 . . 3
87rgen 2483 . 2
9 ssunieq 3764 . . 3
109eqcomd 2143 . 2
114, 8, 10sylancl 409 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 103   wceq 1331   wcel 1480  wral 2414  crab 2418   wss 3066  cuni 3731 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rab 2423  df-v 2683  df-in 3072  df-ss 3079  df-uni 3732 This theorem is referenced by:  onuniss2  4423
 Copyright terms: Public domain W3C validator