ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unimax Unicode version

Theorem unimax 3818
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem unimax
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssid 3158 . . 3  |-  A  C_  A
2 sseq1 3161 . . . 4  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
32elrab3 2879 . . 3  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  x  C_  A }  <->  A  C_  A
) )
41, 3mpbiri 167 . 2  |-  ( A  e.  B  ->  A  e.  { x  e.  B  |  x  C_  A }
)
5 sseq1 3161 . . . . 5  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
65elrab 2878 . . . 4  |-  ( y  e.  { x  e.  B  |  x  C_  A }  <->  ( y  e.  B  /\  y  C_  A ) )
76simprbi 273 . . 3  |-  ( y  e.  { x  e.  B  |  x  C_  A }  ->  y  C_  A )
87rgen 2517 . 2  |-  A. y  e.  { x  e.  B  |  x  C_  A }
y  C_  A
9 ssunieq 3817 . . 3  |-  ( ( A  e.  { x  e.  B  |  x  C_  A }  /\  A. y  e.  { x  e.  B  |  x  C_  A } y  C_  A )  ->  A  =  U. { x  e.  B  |  x  C_  A } )
109eqcomd 2170 . 2  |-  ( ( A  e.  { x  e.  B  |  x  C_  A }  /\  A. y  e.  { x  e.  B  |  x  C_  A } y  C_  A )  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
114, 8, 10sylancl 410 1  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1342    e. wcel 2135   A.wral 2442   {crab 2446    C_ wss 3112   U.cuni 3784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-ext 2146
This theorem depends on definitions:  df-bi 116  df-tru 1345  df-nf 1448  df-sb 1750  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ral 2447  df-rab 2451  df-v 2724  df-in 3118  df-ss 3125  df-uni 3785
This theorem is referenced by:  onuniss2  4484
  Copyright terms: Public domain W3C validator