Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unimax | Unicode version |
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.) |
Ref | Expression |
---|---|
unimax |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3167 | . . 3 | |
2 | sseq1 3170 | . . . 4 | |
3 | 2 | elrab3 2887 | . . 3 |
4 | 1, 3 | mpbiri 167 | . 2 |
5 | sseq1 3170 | . . . . 5 | |
6 | 5 | elrab 2886 | . . . 4 |
7 | 6 | simprbi 273 | . . 3 |
8 | 7 | rgen 2523 | . 2 |
9 | ssunieq 3829 | . . 3 | |
10 | 9 | eqcomd 2176 | . 2 |
11 | 4, 8, 10 | sylancl 411 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 wral 2448 crab 2452 wss 3121 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 |
This theorem is referenced by: onuniss2 4496 |
Copyright terms: Public domain | W3C validator |