ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unimax Unicode version

Theorem unimax 3844
Description: Any member of a class is the largest of those members that it includes. (Contributed by NM, 13-Aug-2002.)
Assertion
Ref Expression
unimax  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
Distinct variable groups:    x, A    x, B

Proof of Theorem unimax
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 ssid 3176 . . 3  |-  A  C_  A
2 sseq1 3179 . . . 4  |-  ( x  =  A  ->  (
x  C_  A  <->  A  C_  A
) )
32elrab3 2895 . . 3  |-  ( A  e.  B  ->  ( A  e.  { x  e.  B  |  x  C_  A }  <->  A  C_  A
) )
41, 3mpbiri 168 . 2  |-  ( A  e.  B  ->  A  e.  { x  e.  B  |  x  C_  A }
)
5 sseq1 3179 . . . . 5  |-  ( x  =  y  ->  (
x  C_  A  <->  y  C_  A ) )
65elrab 2894 . . . 4  |-  ( y  e.  { x  e.  B  |  x  C_  A }  <->  ( y  e.  B  /\  y  C_  A ) )
76simprbi 275 . . 3  |-  ( y  e.  { x  e.  B  |  x  C_  A }  ->  y  C_  A )
87rgen 2530 . 2  |-  A. y  e.  { x  e.  B  |  x  C_  A }
y  C_  A
9 ssunieq 3843 . . 3  |-  ( ( A  e.  { x  e.  B  |  x  C_  A }  /\  A. y  e.  { x  e.  B  |  x  C_  A } y  C_  A )  ->  A  =  U. { x  e.  B  |  x  C_  A } )
109eqcomd 2183 . 2  |-  ( ( A  e.  { x  e.  B  |  x  C_  A }  /\  A. y  e.  { x  e.  B  |  x  C_  A } y  C_  A )  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
114, 8, 10sylancl 413 1  |-  ( A  e.  B  ->  U. {
x  e.  B  |  x  C_  A }  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   {crab 2459    C_ wss 3130   U.cuni 3810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rab 2464  df-v 2740  df-in 3136  df-ss 3143  df-uni 3811
This theorem is referenced by:  onuniss2  4512
  Copyright terms: Public domain W3C validator