Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erovlem | Unicode version |
Description: Lemma for eroprf 6566. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
eropr.1 | |
eropr.2 | |
eropr.3 | |
eropr.4 | |
eropr.5 | |
eropr.6 | |
eropr.7 | |
eropr.8 | |
eropr.9 | |
eropr.10 | |
eropr.11 | |
eropr.12 |
Ref | Expression |
---|---|
erovlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . . . 8 | |
2 | 1 | reximi 2554 | . . . . . . 7 |
3 | 2 | reximi 2554 | . . . . . 6 |
4 | eropr.1 | . . . . . . . . . 10 | |
5 | 4 | eleq2i 2224 | . . . . . . . . 9 |
6 | vex 2715 | . . . . . . . . . 10 | |
7 | 6 | elqs 6524 | . . . . . . . . 9 |
8 | 5, 7 | bitri 183 | . . . . . . . 8 |
9 | eropr.2 | . . . . . . . . . 10 | |
10 | 9 | eleq2i 2224 | . . . . . . . . 9 |
11 | vex 2715 | . . . . . . . . . 10 | |
12 | 11 | elqs 6524 | . . . . . . . . 9 |
13 | 10, 12 | bitri 183 | . . . . . . . 8 |
14 | 8, 13 | anbi12i 456 | . . . . . . 7 |
15 | reeanv 2626 | . . . . . . 7 | |
16 | 14, 15 | bitr4i 186 | . . . . . 6 |
17 | 3, 16 | sylibr 133 | . . . . 5 |
18 | 17 | pm4.71ri 390 | . . . 4 |
19 | eropr.3 | . . . . . . . 8 | |
20 | eropr.4 | . . . . . . . 8 | |
21 | eropr.5 | . . . . . . . 8 | |
22 | eropr.6 | . . . . . . . 8 | |
23 | eropr.7 | . . . . . . . 8 | |
24 | eropr.8 | . . . . . . . 8 | |
25 | eropr.9 | . . . . . . . 8 | |
26 | eropr.10 | . . . . . . . 8 | |
27 | eropr.11 | . . . . . . . 8 | |
28 | 4, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27 | eroveu 6564 | . . . . . . 7 |
29 | iota1 5146 | . . . . . . 7 | |
30 | 28, 29 | syl 14 | . . . . . 6 |
31 | eqcom 2159 | . . . . . 6 | |
32 | 30, 31 | bitrdi 195 | . . . . 5 |
33 | 32 | pm5.32da 448 | . . . 4 |
34 | 18, 33 | syl5bb 191 | . . 3 |
35 | 34 | oprabbidv 5869 | . 2 |
36 | eropr.12 | . 2 | |
37 | df-mpo 5823 | . . 3 | |
38 | nfv 1508 | . . . 4 | |
39 | nfv 1508 | . . . . 5 | |
40 | nfiota1 5134 | . . . . . 6 | |
41 | 40 | nfeq2 2311 | . . . . 5 |
42 | 39, 41 | nfan 1545 | . . . 4 |
43 | eqeq1 2164 | . . . . 5 | |
44 | 43 | anbi2d 460 | . . . 4 |
45 | 38, 42, 44 | cbvoprab3 5891 | . . 3 |
46 | 37, 45 | eqtr4i 2181 | . 2 |
47 | 35, 36, 46 | 3eqtr4g 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 weu 2006 wcel 2128 wrex 2436 wss 3102 class class class wbr 3965 cxp 4581 cio 5130 wf 5163 (class class class)co 5818 coprab 5819 cmpo 5820 wer 6470 cec 6471 cqs 6472 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-er 6473 df-ec 6475 df-qs 6479 |
This theorem is referenced by: eroprf 6566 |
Copyright terms: Public domain | W3C validator |