| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erovlem | Unicode version | ||
| Description: Lemma for eroprf 6738. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| Ref | Expression |
|---|---|
| erovlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . . 8
| |
| 2 | 1 | reximi 2605 |
. . . . . . 7
|
| 3 | 2 | reximi 2605 |
. . . . . 6
|
| 4 | eropr.1 |
. . . . . . . . . 10
| |
| 5 | 4 | eleq2i 2274 |
. . . . . . . . 9
|
| 6 | vex 2779 |
. . . . . . . . . 10
| |
| 7 | 6 | elqs 6696 |
. . . . . . . . 9
|
| 8 | 5, 7 | bitri 184 |
. . . . . . . 8
|
| 9 | eropr.2 |
. . . . . . . . . 10
| |
| 10 | 9 | eleq2i 2274 |
. . . . . . . . 9
|
| 11 | vex 2779 |
. . . . . . . . . 10
| |
| 12 | 11 | elqs 6696 |
. . . . . . . . 9
|
| 13 | 10, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | 8, 13 | anbi12i 460 |
. . . . . . 7
|
| 15 | reeanv 2678 |
. . . . . . 7
| |
| 16 | 14, 15 | bitr4i 187 |
. . . . . 6
|
| 17 | 3, 16 | sylibr 134 |
. . . . 5
|
| 18 | 17 | pm4.71ri 392 |
. . . 4
|
| 19 | eropr.3 |
. . . . . . . 8
| |
| 20 | eropr.4 |
. . . . . . . 8
| |
| 21 | eropr.5 |
. . . . . . . 8
| |
| 22 | eropr.6 |
. . . . . . . 8
| |
| 23 | eropr.7 |
. . . . . . . 8
| |
| 24 | eropr.8 |
. . . . . . . 8
| |
| 25 | eropr.9 |
. . . . . . . 8
| |
| 26 | eropr.10 |
. . . . . . . 8
| |
| 27 | eropr.11 |
. . . . . . . 8
| |
| 28 | 4, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27 | eroveu 6736 |
. . . . . . 7
|
| 29 | iota1 5265 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 14 |
. . . . . 6
|
| 31 | eqcom 2209 |
. . . . . 6
| |
| 32 | 30, 31 | bitrdi 196 |
. . . . 5
|
| 33 | 32 | pm5.32da 452 |
. . . 4
|
| 34 | 18, 33 | bitrid 192 |
. . 3
|
| 35 | 34 | oprabbidv 6022 |
. 2
|
| 36 | eropr.12 |
. 2
| |
| 37 | df-mpo 5972 |
. . 3
| |
| 38 | nfv 1552 |
. . . 4
| |
| 39 | nfv 1552 |
. . . . 5
| |
| 40 | nfiota1 5253 |
. . . . . 6
| |
| 41 | 40 | nfeq2 2362 |
. . . . 5
|
| 42 | 39, 41 | nfan 1589 |
. . . 4
|
| 43 | eqeq1 2214 |
. . . . 5
| |
| 44 | 43 | anbi2d 464 |
. . . 4
|
| 45 | 38, 42, 44 | cbvoprab3 6044 |
. . 3
|
| 46 | 37, 45 | eqtr4i 2231 |
. 2
|
| 47 | 35, 36, 46 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-er 6643 df-ec 6645 df-qs 6649 |
| This theorem is referenced by: eroprf 6738 |
| Copyright terms: Public domain | W3C validator |