Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > erovlem | Unicode version |
Description: Lemma for eroprf 6606. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
Ref | Expression |
---|---|
eropr.1 | |
eropr.2 | |
eropr.3 | |
eropr.4 | |
eropr.5 | |
eropr.6 | |
eropr.7 | |
eropr.8 | |
eropr.9 | |
eropr.10 | |
eropr.11 | |
eropr.12 |
Ref | Expression |
---|---|
erovlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . . . . . . . 8 | |
2 | 1 | reximi 2567 | . . . . . . 7 |
3 | 2 | reximi 2567 | . . . . . 6 |
4 | eropr.1 | . . . . . . . . . 10 | |
5 | 4 | eleq2i 2237 | . . . . . . . . 9 |
6 | vex 2733 | . . . . . . . . . 10 | |
7 | 6 | elqs 6564 | . . . . . . . . 9 |
8 | 5, 7 | bitri 183 | . . . . . . . 8 |
9 | eropr.2 | . . . . . . . . . 10 | |
10 | 9 | eleq2i 2237 | . . . . . . . . 9 |
11 | vex 2733 | . . . . . . . . . 10 | |
12 | 11 | elqs 6564 | . . . . . . . . 9 |
13 | 10, 12 | bitri 183 | . . . . . . . 8 |
14 | 8, 13 | anbi12i 457 | . . . . . . 7 |
15 | reeanv 2639 | . . . . . . 7 | |
16 | 14, 15 | bitr4i 186 | . . . . . 6 |
17 | 3, 16 | sylibr 133 | . . . . 5 |
18 | 17 | pm4.71ri 390 | . . . 4 |
19 | eropr.3 | . . . . . . . 8 | |
20 | eropr.4 | . . . . . . . 8 | |
21 | eropr.5 | . . . . . . . 8 | |
22 | eropr.6 | . . . . . . . 8 | |
23 | eropr.7 | . . . . . . . 8 | |
24 | eropr.8 | . . . . . . . 8 | |
25 | eropr.9 | . . . . . . . 8 | |
26 | eropr.10 | . . . . . . . 8 | |
27 | eropr.11 | . . . . . . . 8 | |
28 | 4, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27 | eroveu 6604 | . . . . . . 7 |
29 | iota1 5174 | . . . . . . 7 | |
30 | 28, 29 | syl 14 | . . . . . 6 |
31 | eqcom 2172 | . . . . . 6 | |
32 | 30, 31 | bitrdi 195 | . . . . 5 |
33 | 32 | pm5.32da 449 | . . . 4 |
34 | 18, 33 | syl5bb 191 | . . 3 |
35 | 34 | oprabbidv 5907 | . 2 |
36 | eropr.12 | . 2 | |
37 | df-mpo 5858 | . . 3 | |
38 | nfv 1521 | . . . 4 | |
39 | nfv 1521 | . . . . 5 | |
40 | nfiota1 5162 | . . . . . 6 | |
41 | 40 | nfeq2 2324 | . . . . 5 |
42 | 39, 41 | nfan 1558 | . . . 4 |
43 | eqeq1 2177 | . . . . 5 | |
44 | 43 | anbi2d 461 | . . . 4 |
45 | 38, 42, 44 | cbvoprab3 5929 | . . 3 |
46 | 37, 45 | eqtr4i 2194 | . 2 |
47 | 35, 36, 46 | 3eqtr4g 2228 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 weu 2019 wcel 2141 wrex 2449 wss 3121 class class class wbr 3989 cxp 4609 cio 5158 wf 5194 (class class class)co 5853 coprab 5854 cmpo 5855 wer 6510 cec 6511 cqs 6512 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-er 6513 df-ec 6515 df-qs 6519 |
This theorem is referenced by: eroprf 6606 |
Copyright terms: Public domain | W3C validator |