| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > erovlem | Unicode version | ||
| Description: Lemma for eroprf 6696. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.) |
| Ref | Expression |
|---|---|
| eropr.1 |
|
| eropr.2 |
|
| eropr.3 |
|
| eropr.4 |
|
| eropr.5 |
|
| eropr.6 |
|
| eropr.7 |
|
| eropr.8 |
|
| eropr.9 |
|
| eropr.10 |
|
| eropr.11 |
|
| eropr.12 |
|
| Ref | Expression |
|---|---|
| erovlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 |
. . . . . . . 8
| |
| 2 | 1 | reximi 2594 |
. . . . . . 7
|
| 3 | 2 | reximi 2594 |
. . . . . 6
|
| 4 | eropr.1 |
. . . . . . . . . 10
| |
| 5 | 4 | eleq2i 2263 |
. . . . . . . . 9
|
| 6 | vex 2766 |
. . . . . . . . . 10
| |
| 7 | 6 | elqs 6654 |
. . . . . . . . 9
|
| 8 | 5, 7 | bitri 184 |
. . . . . . . 8
|
| 9 | eropr.2 |
. . . . . . . . . 10
| |
| 10 | 9 | eleq2i 2263 |
. . . . . . . . 9
|
| 11 | vex 2766 |
. . . . . . . . . 10
| |
| 12 | 11 | elqs 6654 |
. . . . . . . . 9
|
| 13 | 10, 12 | bitri 184 |
. . . . . . . 8
|
| 14 | 8, 13 | anbi12i 460 |
. . . . . . 7
|
| 15 | reeanv 2667 |
. . . . . . 7
| |
| 16 | 14, 15 | bitr4i 187 |
. . . . . 6
|
| 17 | 3, 16 | sylibr 134 |
. . . . 5
|
| 18 | 17 | pm4.71ri 392 |
. . . 4
|
| 19 | eropr.3 |
. . . . . . . 8
| |
| 20 | eropr.4 |
. . . . . . . 8
| |
| 21 | eropr.5 |
. . . . . . . 8
| |
| 22 | eropr.6 |
. . . . . . . 8
| |
| 23 | eropr.7 |
. . . . . . . 8
| |
| 24 | eropr.8 |
. . . . . . . 8
| |
| 25 | eropr.9 |
. . . . . . . 8
| |
| 26 | eropr.10 |
. . . . . . . 8
| |
| 27 | eropr.11 |
. . . . . . . 8
| |
| 28 | 4, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27 | eroveu 6694 |
. . . . . . 7
|
| 29 | iota1 5234 |
. . . . . . 7
| |
| 30 | 28, 29 | syl 14 |
. . . . . 6
|
| 31 | eqcom 2198 |
. . . . . 6
| |
| 32 | 30, 31 | bitrdi 196 |
. . . . 5
|
| 33 | 32 | pm5.32da 452 |
. . . 4
|
| 34 | 18, 33 | bitrid 192 |
. . 3
|
| 35 | 34 | oprabbidv 5980 |
. 2
|
| 36 | eropr.12 |
. 2
| |
| 37 | df-mpo 5930 |
. . 3
| |
| 38 | nfv 1542 |
. . . 4
| |
| 39 | nfv 1542 |
. . . . 5
| |
| 40 | nfiota1 5222 |
. . . . . 6
| |
| 41 | 40 | nfeq2 2351 |
. . . . 5
|
| 42 | 39, 41 | nfan 1579 |
. . . 4
|
| 43 | eqeq1 2203 |
. . . . 5
| |
| 44 | 43 | anbi2d 464 |
. . . 4
|
| 45 | 38, 42, 44 | cbvoprab3 6002 |
. . 3
|
| 46 | 37, 45 | eqtr4i 2220 |
. 2
|
| 47 | 35, 36, 46 | 3eqtr4g 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-er 6601 df-ec 6603 df-qs 6607 |
| This theorem is referenced by: eroprf 6696 |
| Copyright terms: Public domain | W3C validator |