ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  erovlem Unicode version

Theorem erovlem 6737
Description: Lemma for eroprf 6738. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 30-Dec-2014.)
Hypotheses
Ref Expression
eropr.1  |-  J  =  ( A /. R
)
eropr.2  |-  K  =  ( B /. S
)
eropr.3  |-  ( ph  ->  T  e.  Z )
eropr.4  |-  ( ph  ->  R  Er  U )
eropr.5  |-  ( ph  ->  S  Er  V )
eropr.6  |-  ( ph  ->  T  Er  W )
eropr.7  |-  ( ph  ->  A  C_  U )
eropr.8  |-  ( ph  ->  B  C_  V )
eropr.9  |-  ( ph  ->  C  C_  W )
eropr.10  |-  ( ph  ->  .+  : ( A  X.  B ) --> C )
eropr.11  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B
) ) )  -> 
( ( r R s  /\  t S u )  ->  (
r  .+  t ) T ( s  .+  u ) ) )
eropr.12  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) }
Assertion
Ref Expression
erovlem  |-  ( ph  -> 
.+^  =  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) )
Distinct variable groups:    q, p, r, s, t, u, x, y, z, A    B, p, q, r, s, t, u, x, y, z    J, p, q, x, y, z    R, p, q, r, s, t, u, x, y, z    K, p, q, x, y, z    S, p, q, r, s, t, u, x, y, z    .+ , p, q, r, s, t, u, x, y, z    ph, p, q, r, s, t, u, x, y, z    T, p, q, r, s, t, u, x, y, z
Allowed substitution hints:    C( x, y, z, u, t, s, r, q, p)    .+^ ( x, y, z, u, t, s, r, q, p)    U( x, y, z, u, t, s, r, q, p)    J( u, t, s, r)    K( u, t, s, r)    V( x, y, z, u, t, s, r, q, p)    W( x, y, z, u, t, s, r, q, p)    Z( x, y, z, u, t, s, r, q, p)

Proof of Theorem erovlem
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 simpl 109 . . . . . . . 8  |-  ( ( ( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
)  ->  ( x  =  [ p ] R  /\  y  =  [
q ] S ) )
21reximi 2605 . . . . . . 7  |-  ( E. q  e.  B  ( ( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
)  ->  E. q  e.  B  ( x  =  [ p ] R  /\  y  =  [
q ] S ) )
32reximi 2605 . . . . . 6  |-  ( E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
)  ->  E. p  e.  A  E. q  e.  B  ( x  =  [ p ] R  /\  y  =  [
q ] S ) )
4 eropr.1 . . . . . . . . . 10  |-  J  =  ( A /. R
)
54eleq2i 2274 . . . . . . . . 9  |-  ( x  e.  J  <->  x  e.  ( A /. R ) )
6 vex 2779 . . . . . . . . . 10  |-  x  e. 
_V
76elqs 6696 . . . . . . . . 9  |-  ( x  e.  ( A /. R )  <->  E. p  e.  A  x  =  [ p ] R
)
85, 7bitri 184 . . . . . . . 8  |-  ( x  e.  J  <->  E. p  e.  A  x  =  [ p ] R
)
9 eropr.2 . . . . . . . . . 10  |-  K  =  ( B /. S
)
109eleq2i 2274 . . . . . . . . 9  |-  ( y  e.  K  <->  y  e.  ( B /. S ) )
11 vex 2779 . . . . . . . . . 10  |-  y  e. 
_V
1211elqs 6696 . . . . . . . . 9  |-  ( y  e.  ( B /. S )  <->  E. q  e.  B  y  =  [ q ] S
)
1310, 12bitri 184 . . . . . . . 8  |-  ( y  e.  K  <->  E. q  e.  B  y  =  [ q ] S
)
148, 13anbi12i 460 . . . . . . 7  |-  ( ( x  e.  J  /\  y  e.  K )  <->  ( E. p  e.  A  x  =  [ p ] R  /\  E. q  e.  B  y  =  [ q ] S
) )
15 reeanv 2678 . . . . . . 7  |-  ( E. p  e.  A  E. q  e.  B  (
x  =  [ p ] R  /\  y  =  [ q ] S
)  <->  ( E. p  e.  A  x  =  [ p ] R  /\  E. q  e.  B  y  =  [ q ] S ) )
1614, 15bitr4i 187 . . . . . 6  |-  ( ( x  e.  J  /\  y  e.  K )  <->  E. p  e.  A  E. q  e.  B  (
x  =  [ p ] R  /\  y  =  [ q ] S
) )
173, 16sylibr 134 . . . . 5  |-  ( E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
)  ->  ( x  e.  J  /\  y  e.  K ) )
1817pm4.71ri 392 . . . 4  |-  ( E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
)  <->  ( ( x  e.  J  /\  y  e.  K )  /\  E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
) ) )
19 eropr.3 . . . . . . . 8  |-  ( ph  ->  T  e.  Z )
20 eropr.4 . . . . . . . 8  |-  ( ph  ->  R  Er  U )
21 eropr.5 . . . . . . . 8  |-  ( ph  ->  S  Er  V )
22 eropr.6 . . . . . . . 8  |-  ( ph  ->  T  Er  W )
23 eropr.7 . . . . . . . 8  |-  ( ph  ->  A  C_  U )
24 eropr.8 . . . . . . . 8  |-  ( ph  ->  B  C_  V )
25 eropr.9 . . . . . . . 8  |-  ( ph  ->  C  C_  W )
26 eropr.10 . . . . . . . 8  |-  ( ph  ->  .+  : ( A  X.  B ) --> C )
27 eropr.11 . . . . . . . 8  |-  ( (
ph  /\  ( (
r  e.  A  /\  s  e.  A )  /\  ( t  e.  B  /\  u  e.  B
) ) )  -> 
( ( r R s  /\  t S u )  ->  (
r  .+  t ) T ( s  .+  u ) ) )
284, 9, 19, 20, 21, 22, 23, 24, 25, 26, 27eroveu 6736 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  ->  E! z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )
29 iota1 5265 . . . . . . 7  |-  ( E! z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  ->  ( E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
)  <->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )  =  z ) )
3028, 29syl 14 . . . . . 6  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  <-> 
( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  =  z ) )
31 eqcom 2209 . . . . . 6  |-  ( ( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )  =  z  <-> 
z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) )
3230, 31bitrdi 196 . . . . 5  |-  ( (
ph  /\  ( x  e.  J  /\  y  e.  K ) )  -> 
( E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  <-> 
z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) )
3332pm5.32da 452 . . . 4  |-  ( ph  ->  ( ( ( x  e.  J  /\  y  e.  K )  /\  E. p  e.  A  E. q  e.  B  (
( x  =  [
p ] R  /\  y  =  [ q ] S )  /\  z  =  [ ( p  .+  q ) ] T
) )  <->  ( (
x  e.  J  /\  y  e.  K )  /\  z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) ) )
3418, 33bitrid 192 . . 3  |-  ( ph  ->  ( E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T )  <-> 
( ( x  e.  J  /\  y  e.  K )  /\  z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) ) )
3534oprabbidv 6022 . 2  |-  ( ph  ->  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) }  =  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  J  /\  y  e.  K
)  /\  z  =  ( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) ) } )
36 eropr.12 . 2  |-  .+^  =  { <. <. x ,  y
>. ,  z >.  |  E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) }
37 df-mpo 5972 . . 3  |-  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) )  =  { <. <. x ,  y
>. ,  w >.  |  ( ( x  e.  J  /\  y  e.  K )  /\  w  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) }
38 nfv 1552 . . . 4  |-  F/ w
( ( x  e.  J  /\  y  e.  K )  /\  z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) )
39 nfv 1552 . . . . 5  |-  F/ z ( x  e.  J  /\  y  e.  K
)
40 nfiota1 5253 . . . . . 6  |-  F/_ z
( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) )
4140nfeq2 2362 . . . . 5  |-  F/ z  w  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )
4239, 41nfan 1589 . . . 4  |-  F/ z ( ( x  e.  J  /\  y  e.  K )  /\  w  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) )
43 eqeq1 2214 . . . . 5  |-  ( z  =  w  ->  (
z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) )  <->  w  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) )
4443anbi2d 464 . . . 4  |-  ( z  =  w  ->  (
( ( x  e.  J  /\  y  e.  K )  /\  z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) )  <->  ( (
x  e.  J  /\  y  e.  K )  /\  w  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) ) )
4538, 42, 44cbvoprab3 6044 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ( ( x  e.  J  /\  y  e.  K
)  /\  z  =  ( iota z E. p  e.  A  E. q  e.  B  ( (
x  =  [ p ] R  /\  y  =  [ q ] S
)  /\  z  =  [ ( p  .+  q ) ] T
) ) ) }  =  { <. <. x ,  y >. ,  w >.  |  ( ( x  e.  J  /\  y  e.  K )  /\  w  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) }
4637, 45eqtr4i 2231 . 2  |-  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) )  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  J  /\  y  e.  K )  /\  z  =  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) }
4735, 36, 463eqtr4g 2265 1  |-  ( ph  -> 
.+^  =  ( x  e.  J ,  y  e.  K  |->  ( iota z E. p  e.  A  E. q  e.  B  ( ( x  =  [ p ] R  /\  y  =  [
q ] S )  /\  z  =  [
( p  .+  q
) ] T ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   E!weu 2055    e. wcel 2178   E.wrex 2487    C_ wss 3174   class class class wbr 4059    X. cxp 4691   iotacio 5249   -->wf 5286  (class class class)co 5967   {coprab 5968    e. cmpo 5969    Er wer 6640   [cec 6641   /.cqs 6642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-er 6643  df-ec 6645  df-qs 6649
This theorem is referenced by:  eroprf  6738
  Copyright terms: Public domain W3C validator