| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ltxr | Unicode version | ||
| Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| ltxr | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | breq12 4038 | 
. . . . 5
 | |
| 2 | df-3an 982 | 
. . . . . 6
 | |
| 3 | 2 | opabbii 4100 | 
. . . . 5
 | 
| 4 | 1, 3 | brab2ga 4738 | 
. . . 4
 | 
| 5 | 4 | a1i 9 | 
. . 3
 | 
| 6 | brun 4084 | 
. . . 4
 | |
| 7 | brxp 4694 | 
. . . . . . 7
 | |
| 8 | elun 3304 | 
. . . . . . . . . . 11
 | |
| 9 | orcom 729 | 
. . . . . . . . . . 11
 | |
| 10 | 8, 9 | bitri 184 | 
. . . . . . . . . 10
 | 
| 11 | elsng 3637 | 
. . . . . . . . . . 11
 | |
| 12 | 11 | orbi1d 792 | 
. . . . . . . . . 10
 | 
| 13 | 10, 12 | bitrid 192 | 
. . . . . . . . 9
 | 
| 14 | elsng 3637 | 
. . . . . . . . 9
 | |
| 15 | 13, 14 | bi2anan9 606 | 
. . . . . . . 8
 | 
| 16 | andir 820 | 
. . . . . . . 8
 | |
| 17 | 15, 16 | bitrdi 196 | 
. . . . . . 7
 | 
| 18 | 7, 17 | bitrid 192 | 
. . . . . 6
 | 
| 19 | brxp 4694 | 
. . . . . . 7
 | |
| 20 | 11 | anbi1d 465 | 
. . . . . . . 8
 | 
| 21 | 20 | adantr 276 | 
. . . . . . 7
 | 
| 22 | 19, 21 | bitrid 192 | 
. . . . . 6
 | 
| 23 | 18, 22 | orbi12d 794 | 
. . . . 5
 | 
| 24 | orass 768 | 
. . . . 5
 | |
| 25 | 23, 24 | bitrdi 196 | 
. . . 4
 | 
| 26 | 6, 25 | bitrid 192 | 
. . 3
 | 
| 27 | 5, 26 | orbi12d 794 | 
. 2
 | 
| 28 | df-ltxr 8066 | 
. . . 4
 | |
| 29 | 28 | breqi 4039 | 
. . 3
 | 
| 30 | brun 4084 | 
. . 3
 | |
| 31 | 29, 30 | bitri 184 | 
. 2
 | 
| 32 | orass 768 | 
. 2
 | |
| 33 | 27, 31, 32 | 3bitr4g 223 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-xp 4669 df-ltxr 8066 | 
| This theorem is referenced by: xrltnr 9854 ltpnf 9855 mnflt 9858 mnfltpnf 9860 pnfnlt 9862 nltmnf 9863 | 
| Copyright terms: Public domain | W3C validator |