| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltxr | Unicode version | ||
| Description: The 'less than' binary relation on the set of extended reals. Definition 12-3.1 of [Gleason] p. 173. (Contributed by NM, 14-Oct-2005.) |
| Ref | Expression |
|---|---|
| ltxr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq12 4049 |
. . . . 5
| |
| 2 | df-3an 983 |
. . . . . 6
| |
| 3 | 2 | opabbii 4111 |
. . . . 5
|
| 4 | 1, 3 | brab2ga 4750 |
. . . 4
|
| 5 | 4 | a1i 9 |
. . 3
|
| 6 | brun 4095 |
. . . 4
| |
| 7 | brxp 4706 |
. . . . . . 7
| |
| 8 | elun 3314 |
. . . . . . . . . . 11
| |
| 9 | orcom 730 |
. . . . . . . . . . 11
| |
| 10 | 8, 9 | bitri 184 |
. . . . . . . . . 10
|
| 11 | elsng 3648 |
. . . . . . . . . . 11
| |
| 12 | 11 | orbi1d 793 |
. . . . . . . . . 10
|
| 13 | 10, 12 | bitrid 192 |
. . . . . . . . 9
|
| 14 | elsng 3648 |
. . . . . . . . 9
| |
| 15 | 13, 14 | bi2anan9 606 |
. . . . . . . 8
|
| 16 | andir 821 |
. . . . . . . 8
| |
| 17 | 15, 16 | bitrdi 196 |
. . . . . . 7
|
| 18 | 7, 17 | bitrid 192 |
. . . . . 6
|
| 19 | brxp 4706 |
. . . . . . 7
| |
| 20 | 11 | anbi1d 465 |
. . . . . . . 8
|
| 21 | 20 | adantr 276 |
. . . . . . 7
|
| 22 | 19, 21 | bitrid 192 |
. . . . . 6
|
| 23 | 18, 22 | orbi12d 795 |
. . . . 5
|
| 24 | orass 769 |
. . . . 5
| |
| 25 | 23, 24 | bitrdi 196 |
. . . 4
|
| 26 | 6, 25 | bitrid 192 |
. . 3
|
| 27 | 5, 26 | orbi12d 795 |
. 2
|
| 28 | df-ltxr 8112 |
. . . 4
| |
| 29 | 28 | breqi 4050 |
. . 3
|
| 30 | brun 4095 |
. . 3
| |
| 31 | 29, 30 | bitri 184 |
. 2
|
| 32 | orass 769 |
. 2
| |
| 33 | 27, 31, 32 | 3bitr4g 223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-br 4045 df-opab 4106 df-xp 4681 df-ltxr 8112 |
| This theorem is referenced by: xrltnr 9901 ltpnf 9902 mnflt 9905 mnfltpnf 9907 pnfnlt 9909 nltmnf 9910 |
| Copyright terms: Public domain | W3C validator |