Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unass | Unicode version |
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3263 | . . 3 | |
2 | elun 3263 | . . . 4 | |
3 | 2 | orbi2i 752 | . . 3 |
4 | elun 3263 | . . . . 5 | |
5 | 4 | orbi1i 753 | . . . 4 |
6 | orass 757 | . . . 4 | |
7 | 5, 6 | bitr2i 184 | . . 3 |
8 | 1, 3, 7 | 3bitrri 206 | . 2 |
9 | 8 | uneqri 3264 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 698 wceq 1343 wcel 2136 cun 3114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 |
This theorem is referenced by: un12 3280 un23 3281 un4 3282 qdass 3673 qdassr 3674 rdgisucinc 6353 oasuc 6432 unfidisj 6887 undifdc 6889 djuassen 7173 fzosplitprm1 10169 hashunlem 10717 |
Copyright terms: Public domain | W3C validator |