| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unass | Unicode version | ||
| Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3304 |
. . 3
| |
| 2 | elun 3304 |
. . . 4
| |
| 3 | 2 | orbi2i 763 |
. . 3
|
| 4 | elun 3304 |
. . . . 5
| |
| 5 | 4 | orbi1i 764 |
. . . 4
|
| 6 | orass 768 |
. . . 4
| |
| 7 | 5, 6 | bitr2i 185 |
. . 3
|
| 8 | 1, 3, 7 | 3bitrri 207 |
. 2
|
| 9 | 8 | uneqri 3305 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: un12 3321 un23 3322 un4 3323 qdass 3719 qdassr 3720 rdgisucinc 6443 oasuc 6522 unfidisj 6983 undifdc 6985 djuassen 7284 fzosplitprm1 10310 hashunlem 10896 plyun0 14972 |
| Copyright terms: Public domain | W3C validator |