| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unass | Unicode version | ||
| Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| unass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 3345 |
. . 3
| |
| 2 | elun 3345 |
. . . 4
| |
| 3 | 2 | orbi2i 767 |
. . 3
|
| 4 | elun 3345 |
. . . . 5
| |
| 5 | 4 | orbi1i 768 |
. . . 4
|
| 6 | orass 772 |
. . . 4
| |
| 7 | 5, 6 | bitr2i 185 |
. . 3
|
| 8 | 1, 3, 7 | 3bitrri 207 |
. 2
|
| 9 | 8 | uneqri 3346 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: un12 3362 un23 3363 un4 3364 qdass 3763 qdassr 3764 rdgisucinc 6531 oasuc 6610 unfidisj 7084 undifdc 7086 djuassen 7399 fzosplitprm1 10440 hashunlem 11026 prdsvalstrd 13304 plyun0 15410 |
| Copyright terms: Public domain | W3C validator |