ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unass Unicode version

Theorem unass 3294
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
unass  |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C )
)

Proof of Theorem unass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elun 3278 . . 3  |-  ( x  e.  ( A  u.  ( B  u.  C
) )  <->  ( x  e.  A  \/  x  e.  ( B  u.  C
) ) )
2 elun 3278 . . . 4  |-  ( x  e.  ( B  u.  C )  <->  ( x  e.  B  \/  x  e.  C ) )
32orbi2i 762 . . 3  |-  ( ( x  e.  A  \/  x  e.  ( B  u.  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  \/  x  e.  C )
) )
4 elun 3278 . . . . 5  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
54orbi1i 763 . . . 4  |-  ( ( x  e.  ( A  u.  B )  \/  x  e.  C )  <-> 
( ( x  e.  A  \/  x  e.  B )  \/  x  e.  C ) )
6 orass 767 . . . 4  |-  ( ( ( x  e.  A  \/  x  e.  B
)  \/  x  e.  C )  <->  ( x  e.  A  \/  (
x  e.  B  \/  x  e.  C )
) )
75, 6bitr2i 185 . . 3  |-  ( ( x  e.  A  \/  ( x  e.  B  \/  x  e.  C
) )  <->  ( x  e.  ( A  u.  B
)  \/  x  e.  C ) )
81, 3, 73bitrri 207 . 2  |-  ( ( x  e.  ( A  u.  B )  \/  x  e.  C )  <-> 
x  e.  ( A  u.  ( B  u.  C ) ) )
98uneqri 3279 1  |-  ( ( A  u.  B )  u.  C )  =  ( A  u.  ( B  u.  C )
)
Colors of variables: wff set class
Syntax hints:    \/ wo 708    = wceq 1353    e. wcel 2148    u. cun 3129
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135
This theorem is referenced by:  un12  3295  un23  3296  un4  3297  qdass  3691  qdassr  3692  rdgisucinc  6388  oasuc  6467  unfidisj  6923  undifdc  6925  djuassen  7218  fzosplitprm1  10236  hashunlem  10786
  Copyright terms: Public domain W3C validator