Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unass | Unicode version |
Description: Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
unass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 3268 | . . 3 | |
2 | elun 3268 | . . . 4 | |
3 | 2 | orbi2i 757 | . . 3 |
4 | elun 3268 | . . . . 5 | |
5 | 4 | orbi1i 758 | . . . 4 |
6 | orass 762 | . . . 4 | |
7 | 5, 6 | bitr2i 184 | . . 3 |
8 | 1, 3, 7 | 3bitrri 206 | . 2 |
9 | 8 | uneqri 3269 | 1 |
Colors of variables: wff set class |
Syntax hints: wo 703 wceq 1348 wcel 2141 cun 3119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 |
This theorem is referenced by: un12 3285 un23 3286 un4 3287 qdass 3680 qdassr 3681 rdgisucinc 6364 oasuc 6443 unfidisj 6899 undifdc 6901 djuassen 7194 fzosplitprm1 10190 hashunlem 10739 |
Copyright terms: Public domain | W3C validator |