ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmass Unicode version

Theorem lcmass 12407
Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmass  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  ( N lcm  ( M lcm  P
) ) )

Proof of Theorem lcmass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orass 769 . . 3  |-  ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 )  <->  ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) )
2 anass 401 . . . . . 6  |-  ( ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x
)  <->  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) )
32a1i 9 . . . . 5  |-  ( x  e.  NN  ->  (
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
)  <->  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) ) )
43rabbiia 2757 . . . 4  |-  { x  e.  NN  |  ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x ) }  =  { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) }
54infeq1i 7115 . . 3  |- inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) } ,  RR ,  <  )
61, 5ifbieq2i 3594 . 2  |-  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  ) )  =  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  ) )
7 lcmcl 12394 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N lcm  M )  e.  NN0 )
873adant3 1020 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  M )  e.  NN0 )
98nn0zd 9493 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  M )  e.  ZZ )
10 simp3 1002 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  P  e.  ZZ )
11 lcmval 12385 . . . 4  |-  ( ( ( N lcm  M )  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N lcm 
M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } ,  RR ,  <  ) ) )
129, 10, 11syl2anc 411 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N lcm 
M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } ,  RR ,  <  ) ) )
13 lcmeq0 12393 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N lcm  M
)  =  0  <->  ( N  =  0  \/  M  =  0 ) ) )
14133adant3 1020 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M )  =  0  <->  ( N  =  0  \/  M  =  0 ) ) )
1514orbi1d 793 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N lcm  M
)  =  0  \/  P  =  0 )  <-> 
( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ) )
1615bicomd 141 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  =  0  \/  M  =  0 )  \/  P  =  0 )  <->  ( ( N lcm  M )  =  0  \/  P  =  0 ) ) )
17 nnz 9391 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ZZ )
1817adantl 277 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  x  e.  ZZ )
19 simp1 1000 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  N  e.  ZZ )
2019adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  N  e.  ZZ )
21 simpl2 1004 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  M  e.  ZZ )
22 lcmdvdsb 12406 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  ||  x  /\  M  ||  x )  <-> 
( N lcm  M ) 
||  x ) )
2318, 20, 21, 22syl3anc 1250 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( N 
||  x  /\  M  ||  x )  <->  ( N lcm  M )  ||  x ) )
2423anbi1d 465 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x )  <->  ( ( N lcm  M )  ||  x  /\  P  ||  x ) ) )
2524rabbidva 2760 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  NN  |  ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x ) }  =  { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } )
2625infeq1d 7114 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  -> inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( ( N lcm 
M )  ||  x  /\  P  ||  x ) } ,  RR ,  <  ) )
2716, 26ifbieq2d 3595 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N 
||  x  /\  M  ||  x )  /\  P  ||  x ) } ,  RR ,  <  ) )  =  if ( ( ( N lcm  M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( ( N lcm  M
)  ||  x  /\  P  ||  x ) } ,  RR ,  <  ) ) )
2812, 27eqtr4d 2241 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N 
||  x  /\  M  ||  x )  /\  P  ||  x ) } ,  RR ,  <  ) ) )
29 lcmcl 12394 . . . . . 6  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  NN0 )
30293adant1 1018 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  NN0 )
3130nn0zd 9493 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  ZZ )
32 lcmval 12385 . . . 4  |-  ( ( N  e.  ZZ  /\  ( M lcm  P )  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M lcm  P
)  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) ) )
3319, 31, 32syl2anc 411 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M lcm  P
)  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) ) )
34 lcmeq0 12393 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( M lcm  P
)  =  0  <->  ( M  =  0  \/  P  =  0 ) ) )
35343adant1 1018 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M lcm  P )  =  0  <->  ( M  =  0  \/  P  =  0 ) ) )
3635orbi2d 792 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  \/  ( M lcm  P
)  =  0 )  <-> 
( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ) )
3736bicomd 141 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  \/  ( M  =  0  \/  P  =  0 ) )  <->  ( N  =  0  \/  ( M lcm  P )  =  0 ) ) )
3810adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  P  e.  ZZ )
39 lcmdvdsb 12406 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M  ||  x  /\  P  ||  x )  <-> 
( M lcm  P ) 
||  x ) )
4018, 21, 38, 39syl3anc 1250 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( M 
||  x  /\  P  ||  x )  <->  ( M lcm  P )  ||  x ) )
4140anbi2d 464 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) )  <->  ( N  ||  x  /\  ( M lcm 
P )  ||  x
) ) )
4241rabbidva 2760 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) }  =  { x  e.  NN  |  ( N 
||  x  /\  ( M lcm  P )  ||  x
) } )
4342infeq1d 7114 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  -> inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) )
4437, 43ifbieq2d 3595 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  \/  ( M lcm  P )  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M lcm  P ) 
||  x ) } ,  RR ,  <  ) ) )
4533, 44eqtr4d 2241 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  ) ) )
466, 28, 453eqtr4a 2264 1  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  ( N lcm  ( M lcm  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2176   {crab 2488   ifcif 3571   class class class wbr 4044  (class class class)co 5944  infcinf 7085   RRcr 7924   0cc0 7925    < clt 8107   NNcn 9036   NN0cn0 9295   ZZcz 9372    || cdvds 12098   lcm clcm 12382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044  ax-caucvg 8045
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-frec 6477  df-sup 7086  df-inf 7087  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fz 10131  df-fzo 10265  df-fl 10413  df-mod 10468  df-seqfrec 10593  df-exp 10684  df-cj 11153  df-re 11154  df-im 11155  df-rsqrt 11309  df-abs 11310  df-dvds 12099  df-gcd 12275  df-lcm 12383
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator