ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lcmass Unicode version

Theorem lcmass 12223
Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmass  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  ( N lcm  ( M lcm  P
) ) )

Proof of Theorem lcmass
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orass 768 . . 3  |-  ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 )  <->  ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) )
2 anass 401 . . . . . 6  |-  ( ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x
)  <->  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) )
32a1i 9 . . . . 5  |-  ( x  e.  NN  ->  (
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
)  <->  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) ) )
43rabbiia 2745 . . . 4  |-  { x  e.  NN  |  ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x ) }  =  { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) }
54infeq1i 7072 . . 3  |- inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) } ,  RR ,  <  )
61, 5ifbieq2i 3580 . 2  |-  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  ) )  =  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  ) )
7 lcmcl 12210 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( N lcm  M )  e.  NN0 )
873adant3 1019 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  M )  e.  NN0 )
98nn0zd 9437 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  M )  e.  ZZ )
10 simp3 1001 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  P  e.  ZZ )
11 lcmval 12201 . . . 4  |-  ( ( ( N lcm  M )  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N lcm 
M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } ,  RR ,  <  ) ) )
129, 10, 11syl2anc 411 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N lcm 
M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } ,  RR ,  <  ) ) )
13 lcmeq0 12209 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( N lcm  M
)  =  0  <->  ( N  =  0  \/  M  =  0 ) ) )
14133adant3 1019 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M )  =  0  <->  ( N  =  0  \/  M  =  0 ) ) )
1514orbi1d 792 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N lcm  M
)  =  0  \/  P  =  0 )  <-> 
( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ) )
1615bicomd 141 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( ( N  =  0  \/  M  =  0 )  \/  P  =  0 )  <->  ( ( N lcm  M )  =  0  \/  P  =  0 ) ) )
17 nnz 9336 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  ZZ )
1817adantl 277 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  x  e.  ZZ )
19 simp1 999 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  N  e.  ZZ )
2019adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  N  e.  ZZ )
21 simpl2 1003 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  M  e.  ZZ )
22 lcmdvdsb 12222 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  N  e.  ZZ  /\  M  e.  ZZ )  ->  (
( N  ||  x  /\  M  ||  x )  <-> 
( N lcm  M ) 
||  x ) )
2318, 20, 21, 22syl3anc 1249 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( N 
||  x  /\  M  ||  x )  <->  ( N lcm  M )  ||  x ) )
2423anbi1d 465 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x )  <->  ( ( N lcm  M )  ||  x  /\  P  ||  x ) ) )
2524rabbidva 2748 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  NN  |  ( ( N  ||  x  /\  M  ||  x )  /\  P  ||  x ) }  =  { x  e.  NN  |  ( ( N lcm  M )  ||  x  /\  P  ||  x
) } )
2625infeq1d 7071 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  -> inf ( { x  e.  NN  | 
( ( N  ||  x  /\  M  ||  x
)  /\  P  ||  x
) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( ( N lcm 
M )  ||  x  /\  P  ||  x ) } ,  RR ,  <  ) )
2716, 26ifbieq2d 3581 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N 
||  x  /\  M  ||  x )  /\  P  ||  x ) } ,  RR ,  <  ) )  =  if ( ( ( N lcm  M )  =  0  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( ( N lcm  M
)  ||  x  /\  P  ||  x ) } ,  RR ,  <  ) ) )
2812, 27eqtr4d 2229 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  if ( ( ( N  =  0  \/  M  =  0 )  \/  P  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( ( N 
||  x  /\  M  ||  x )  /\  P  ||  x ) } ,  RR ,  <  ) ) )
29 lcmcl 12210 . . . . . 6  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  NN0 )
30293adant1 1017 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  NN0 )
3130nn0zd 9437 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( M lcm  P )  e.  ZZ )
32 lcmval 12201 . . . 4  |-  ( ( N  e.  ZZ  /\  ( M lcm  P )  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M lcm  P
)  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) ) )
3319, 31, 32syl2anc 411 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M lcm  P
)  =  0 ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) ) )
34 lcmeq0 12209 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( M lcm  P
)  =  0  <->  ( M  =  0  \/  P  =  0 ) ) )
35343adant1 1017 . . . . . 6  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M lcm  P )  =  0  <->  ( M  =  0  \/  P  =  0 ) ) )
3635orbi2d 791 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  \/  ( M lcm  P
)  =  0 )  <-> 
( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ) )
3736bicomd 141 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N  =  0  \/  ( M  =  0  \/  P  =  0 ) )  <->  ( N  =  0  \/  ( M lcm  P )  =  0 ) ) )
3810adantr 276 . . . . . . . 8  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  P  e.  ZZ )
39 lcmdvdsb 12222 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( M  ||  x  /\  P  ||  x )  <-> 
( M lcm  P ) 
||  x ) )
4018, 21, 38, 39syl3anc 1249 . . . . . . 7  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( M 
||  x  /\  P  ||  x )  <->  ( M lcm  P )  ||  x ) )
4140anbi2d 464 . . . . . 6  |-  ( ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  /\  x  e.  NN )  ->  ( ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) )  <->  ( N  ||  x  /\  ( M lcm 
P )  ||  x
) ) )
4241rabbidva 2748 . . . . 5  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  { x  e.  NN  |  ( N 
||  x  /\  ( M  ||  x  /\  P  ||  x ) ) }  =  { x  e.  NN  |  ( N 
||  x  /\  ( M lcm  P )  ||  x
) } )
4342infeq1d 7071 . . . 4  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  -> inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  )  = inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M lcm  P
)  ||  x ) } ,  RR ,  <  ) )
4437, 43ifbieq2d 3581 . . 3  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  |  ( N  ||  x  /\  ( M  ||  x  /\  P  ||  x
) ) } ,  RR ,  <  ) )  =  if ( ( N  =  0  \/  ( M lcm  P )  =  0 ) ,  0 , inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M lcm  P ) 
||  x ) } ,  RR ,  <  ) ) )
4533, 44eqtr4d 2229 . 2  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  ( N lcm  ( M lcm  P ) )  =  if ( ( N  =  0  \/  ( M  =  0  \/  P  =  0 ) ) ,  0 , inf ( { x  e.  NN  | 
( N  ||  x  /\  ( M  ||  x  /\  P  ||  x ) ) } ,  RR ,  <  ) ) )
466, 28, 453eqtr4a 2252 1  |-  ( ( N  e.  ZZ  /\  M  e.  ZZ  /\  P  e.  ZZ )  ->  (
( N lcm  M ) lcm 
P )  =  ( N lcm  ( M lcm  P
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2164   {crab 2476   ifcif 3557   class class class wbr 4029  (class class class)co 5918  infcinf 7042   RRcr 7871   0cc0 7872    < clt 8054   NNcn 8982   NN0cn0 9240   ZZcz 9317    || cdvds 11930   lcm clcm 12198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-fl 10339  df-mod 10394  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-dvds 11931  df-gcd 12080  df-lcm 12199
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator