ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn1uz2 Unicode version

Theorem elnn1uz2 9518
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
elnn1uz2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )

Proof of Theorem elnn1uz2
StepHypRef Expression
1 olc 701 . . . 4  |-  ( N  e.  NN  ->  ( N  =  1  \/  N  e.  NN )
)
2 nnz 9186 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ZZ )
3 1z 9193 . . . . . . . 8  |-  1  e.  ZZ
4 zdceq 9239 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  -> DECID  N  =  1 )
53, 4mpan2 422 . . . . . . 7  |-  ( N  e.  ZZ  -> DECID  N  =  1
)
6 df-dc 821 . . . . . . 7  |-  (DECID  N  =  1  <->  ( N  =  1  \/  -.  N  =  1 ) )
75, 6sylib 121 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  =  1  \/  -.  N  =  1
) )
8 df-ne 2328 . . . . . . 7  |-  ( N  =/=  1  <->  -.  N  =  1 )
98orbi2i 752 . . . . . 6  |-  ( ( N  =  1  \/  N  =/=  1 )  <-> 
( N  =  1  \/  -.  N  =  1 ) )
107, 9sylibr 133 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  =  1  \/  N  =/=  1 ) )
112, 10syl 14 . . . 4  |-  ( N  e.  NN  ->  ( N  =  1  \/  N  =/=  1 ) )
12 ordi 806 . . . 4  |-  ( ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) )  <->  ( ( N  =  1  \/  N  e.  NN )  /\  ( N  =  1  \/  N  =/=  1 ) ) )
131, 11, 12sylanbrc 414 . . 3  |-  ( N  e.  NN  ->  ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) ) )
14 eluz2b3 9515 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
1514orbi2i 752 . . 3  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  <->  ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) ) )
1613, 15sylibr 133 . 2  |-  ( N  e.  NN  ->  ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) ) )
17 1nn 8844 . . . 4  |-  1  e.  NN
18 eleq1 2220 . . . 4  |-  ( N  =  1  ->  ( N  e.  NN  <->  1  e.  NN ) )
1917, 18mpbiri 167 . . 3  |-  ( N  =  1  ->  N  e.  NN )
20 eluz2nn 9477 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
2119, 20jaoi 706 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN )
2216, 21impbii 125 1  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 820    = wceq 1335    e. wcel 2128    =/= wne 2327   ` cfv 5170   1c1 7733   NNcn 8833   2c2 8884   ZZcz 9167   ZZ>=cuz 9439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-inn 8834  df-2 8892  df-n0 9091  df-z 9168  df-uz 9440
This theorem is referenced by:  indstr2  9520  prmdc  12006  dfphi2  12094
  Copyright terms: Public domain W3C validator