ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elnn1uz2 Unicode version

Theorem elnn1uz2 9353
Description: A positive integer is either 1 or greater than or equal to 2. (Contributed by Paul Chapman, 17-Nov-2012.)
Assertion
Ref Expression
elnn1uz2  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )

Proof of Theorem elnn1uz2
StepHypRef Expression
1 olc 683 . . . 4  |-  ( N  e.  NN  ->  ( N  =  1  \/  N  e.  NN )
)
2 nnz 9027 . . . . 5  |-  ( N  e.  NN  ->  N  e.  ZZ )
3 1z 9034 . . . . . . . 8  |-  1  e.  ZZ
4 zdceq 9080 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  -> DECID  N  =  1 )
53, 4mpan2 419 . . . . . . 7  |-  ( N  e.  ZZ  -> DECID  N  =  1
)
6 df-dc 803 . . . . . . 7  |-  (DECID  N  =  1  <->  ( N  =  1  \/  -.  N  =  1 ) )
75, 6sylib 121 . . . . . 6  |-  ( N  e.  ZZ  ->  ( N  =  1  \/  -.  N  =  1
) )
8 df-ne 2284 . . . . . . 7  |-  ( N  =/=  1  <->  -.  N  =  1 )
98orbi2i 734 . . . . . 6  |-  ( ( N  =  1  \/  N  =/=  1 )  <-> 
( N  =  1  \/  -.  N  =  1 ) )
107, 9sylibr 133 . . . . 5  |-  ( N  e.  ZZ  ->  ( N  =  1  \/  N  =/=  1 ) )
112, 10syl 14 . . . 4  |-  ( N  e.  NN  ->  ( N  =  1  \/  N  =/=  1 ) )
12 ordi 788 . . . 4  |-  ( ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) )  <->  ( ( N  =  1  \/  N  e.  NN )  /\  ( N  =  1  \/  N  =/=  1 ) ) )
131, 11, 12sylanbrc 411 . . 3  |-  ( N  e.  NN  ->  ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) ) )
14 eluz2b3 9350 . . . 4  |-  ( N  e.  ( ZZ>= `  2
)  <->  ( N  e.  NN  /\  N  =/=  1 ) )
1514orbi2i 734 . . 3  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  <->  ( N  =  1  \/  ( N  e.  NN  /\  N  =/=  1 ) ) )
1613, 15sylibr 133 . 2  |-  ( N  e.  NN  ->  ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) ) )
17 1nn 8691 . . . 4  |-  1  e.  NN
18 eleq1 2178 . . . 4  |-  ( N  =  1  ->  ( N  e.  NN  <->  1  e.  NN ) )
1917, 18mpbiri 167 . . 3  |-  ( N  =  1  ->  N  e.  NN )
20 eluz2nn 9316 . . 3  |-  ( N  e.  ( ZZ>= `  2
)  ->  N  e.  NN )
2119, 20jaoi 688 . 2  |-  ( ( N  =  1  \/  N  e.  ( ZZ>= ` 
2 ) )  ->  N  e.  NN )
2216, 21impbii 125 1  |-  ( N  e.  NN  <->  ( N  =  1  \/  N  e.  ( ZZ>= `  2 )
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 680  DECID wdc 802    = wceq 1314    e. wcel 1463    =/= wne 2283   ` cfv 5091   1c1 7585   NNcn 8680   2c2 8731   ZZcz 9008   ZZ>=cuz 9278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-addcom 7684  ax-addass 7686  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-0id 7692  ax-rnegex 7693  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-ltadd 7700
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rab 2400  df-v 2660  df-sbc 2881  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-mpt 3959  df-id 4183  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-inn 8681  df-2 8739  df-n0 8932  df-z 9009  df-uz 9279
This theorem is referenced by:  indstr2  9355  dfphi2  11802
  Copyright terms: Public domain W3C validator