ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undi Unicode version

Theorem undi 3375
Description: Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
undi  |-  ( A  u.  ( B  i^i  C ) )  =  ( ( A  u.  B
)  i^i  ( A  u.  C ) )

Proof of Theorem undi
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elin 3310 . . . 4  |-  ( x  e.  ( B  i^i  C )  <->  ( x  e.  B  /\  x  e.  C ) )
21orbi2i 757 . . 3  |-  ( ( x  e.  A  \/  x  e.  ( B  i^i  C ) )  <->  ( x  e.  A  \/  (
x  e.  B  /\  x  e.  C )
) )
3 ordi 811 . . 3  |-  ( ( x  e.  A  \/  ( x  e.  B  /\  x  e.  C
) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( x  e.  A  \/  x  e.  C
) ) )
4 elin 3310 . . . 4  |-  ( x  e.  ( ( A  u.  B )  i^i  ( A  u.  C
) )  <->  ( x  e.  ( A  u.  B
)  /\  x  e.  ( A  u.  C
) ) )
5 elun 3268 . . . . 5  |-  ( x  e.  ( A  u.  B )  <->  ( x  e.  A  \/  x  e.  B ) )
6 elun 3268 . . . . 5  |-  ( x  e.  ( A  u.  C )  <->  ( x  e.  A  \/  x  e.  C ) )
75, 6anbi12i 457 . . . 4  |-  ( ( x  e.  ( A  u.  B )  /\  x  e.  ( A  u.  C ) )  <->  ( (
x  e.  A  \/  x  e.  B )  /\  ( x  e.  A  \/  x  e.  C
) ) )
84, 7bitr2i 184 . . 3  |-  ( ( ( x  e.  A  \/  x  e.  B
)  /\  ( x  e.  A  \/  x  e.  C ) )  <->  x  e.  ( ( A  u.  B )  i^i  ( A  u.  C )
) )
92, 3, 83bitri 205 . 2  |-  ( ( x  e.  A  \/  x  e.  ( B  i^i  C ) )  <->  x  e.  ( ( A  u.  B )  i^i  ( A  u.  C )
) )
109uneqri 3269 1  |-  ( A  u.  ( B  i^i  C ) )  =  ( ( A  u.  B
)  i^i  ( A  u.  C ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    \/ wo 703    = wceq 1348    e. wcel 2141    u. cun 3119    i^i cin 3120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-in 3127
This theorem is referenced by:  undir  3377  undifdc  6897
  Copyright terms: Public domain W3C validator