ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq3 Unicode version

Theorem oteq3 3815
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq3  |-  ( A  =  B  ->  <. C ,  D ,  A >.  = 
<. C ,  D ,  B >. )

Proof of Theorem oteq3
StepHypRef Expression
1 opeq2 3805 . 2  |-  ( A  =  B  ->  <. <. C ,  D >. ,  A >.  = 
<. <. C ,  D >. ,  B >. )
2 df-ot 3628 . 2  |-  <. C ,  D ,  A >.  = 
<. <. C ,  D >. ,  A >.
3 df-ot 3628 . 2  |-  <. C ,  D ,  B >.  = 
<. <. C ,  D >. ,  B >.
41, 2, 33eqtr4g 2251 1  |-  ( A  =  B  ->  <. C ,  D ,  A >.  = 
<. C ,  D ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3621   <.cotp 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-ot 3628
This theorem is referenced by:  oteq3d  3818
  Copyright terms: Public domain W3C validator