ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq2 Unicode version

Theorem oteq2 3775
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq2  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )

Proof of Theorem oteq2
StepHypRef Expression
1 opeq2 3766 . . 3  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
21opeq1d 3771 . 2  |-  ( A  =  B  ->  <. <. C ,  A >. ,  D >.  = 
<. <. C ,  B >. ,  D >. )
3 df-ot 3593 . 2  |-  <. C ,  A ,  D >.  = 
<. <. C ,  A >. ,  D >.
4 df-ot 3593 . 2  |-  <. C ,  B ,  D >.  = 
<. <. C ,  B >. ,  D >.
52, 3, 43eqtr4g 2228 1  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348   <.cop 3586   <.cotp 3587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590  df-op 3592  df-ot 3593
This theorem is referenced by:  oteq2d  3778
  Copyright terms: Public domain W3C validator