ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq2 Unicode version

Theorem oteq2 3803
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq2  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )

Proof of Theorem oteq2
StepHypRef Expression
1 opeq2 3794 . . 3  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
21opeq1d 3799 . 2  |-  ( A  =  B  ->  <. <. C ,  A >. ,  D >.  = 
<. <. C ,  B >. ,  D >. )
3 df-ot 3617 . 2  |-  <. C ,  A ,  D >.  = 
<. <. C ,  A >. ,  D >.
4 df-ot 3617 . 2  |-  <. C ,  B ,  D >.  = 
<. <. C ,  B >. ,  D >.
52, 3, 43eqtr4g 2247 1  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   <.cop 3610   <.cotp 3611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-sn 3613  df-pr 3614  df-op 3616  df-ot 3617
This theorem is referenced by:  oteq2d  3806
  Copyright terms: Public domain W3C validator