ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oteq2 Unicode version

Theorem oteq2 3867
Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015.)
Assertion
Ref Expression
oteq2  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )

Proof of Theorem oteq2
StepHypRef Expression
1 opeq2 3858 . . 3  |-  ( A  =  B  ->  <. C ,  A >.  =  <. C ,  B >. )
21opeq1d 3863 . 2  |-  ( A  =  B  ->  <. <. C ,  A >. ,  D >.  = 
<. <. C ,  B >. ,  D >. )
3 df-ot 3676 . 2  |-  <. C ,  A ,  D >.  = 
<. <. C ,  A >. ,  D >.
4 df-ot 3676 . 2  |-  <. C ,  B ,  D >.  = 
<. <. C ,  B >. ,  D >.
52, 3, 43eqtr4g 2287 1  |-  ( A  =  B  ->  <. C ,  A ,  D >.  = 
<. C ,  B ,  D >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   <.cop 3669   <.cotp 3670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-ot 3676
This theorem is referenced by:  oteq2d  3870
  Copyright terms: Public domain W3C validator