ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  soeq1 Unicode version

Theorem soeq1 4405
Description: Equality theorem for the strict ordering predicate. (Contributed by NM, 16-Mar-1997.)
Assertion
Ref Expression
soeq1  |-  ( R  =  S  ->  ( R  Or  A  <->  S  Or  A ) )

Proof of Theorem soeq1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 poeq1 4389 . . 3  |-  ( R  =  S  ->  ( R  Po  A  <->  S  Po  A ) )
2 breq 4084 . . . . . 6  |-  ( R  =  S  ->  (
x R y  <->  x S
y ) )
3 breq 4084 . . . . . . 7  |-  ( R  =  S  ->  (
x R z  <->  x S
z ) )
4 breq 4084 . . . . . . 7  |-  ( R  =  S  ->  (
z R y  <->  z S
y ) )
53, 4orbi12d 798 . . . . . 6  |-  ( R  =  S  ->  (
( x R z  \/  z R y )  <->  ( x S z  \/  z S y ) ) )
62, 5imbi12d 234 . . . . 5  |-  ( R  =  S  ->  (
( x R y  ->  ( x R z  \/  z R y ) )  <->  ( x S y  ->  (
x S z  \/  z S y ) ) ) )
762ralbidv 2554 . . . 4  |-  ( R  =  S  ->  ( A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  <->  A. y  e.  A  A. z  e.  A  ( x S y  ->  (
x S z  \/  z S y ) ) ) )
87ralbidv 2530 . . 3  |-  ( R  =  S  ->  ( A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) )  <->  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x S y  ->  (
x S z  \/  z S y ) ) ) )
91, 8anbi12d 473 . 2  |-  ( R  =  S  ->  (
( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  ( x R z  \/  z R y ) ) )  <-> 
( S  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x S y  ->  ( x S z  \/  z S y ) ) ) ) )
10 df-iso 4387 . 2  |-  ( R  Or  A  <->  ( R  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x R y  ->  (
x R z  \/  z R y ) ) ) )
11 df-iso 4387 . 2  |-  ( S  Or  A  <->  ( S  Po  A  /\  A. x  e.  A  A. y  e.  A  A. z  e.  A  ( x S y  ->  (
x S z  \/  z S y ) ) ) )
129, 10, 113bitr4g 223 1  |-  ( R  =  S  ->  ( R  Or  A  <->  S  Or  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395   A.wral 2508   class class class wbr 4082    Po wpo 4384    Or wor 4385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-4 1556  ax-17 1572  ax-ial 1580  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-cleq 2222  df-clel 2225  df-ral 2513  df-br 4083  df-po 4386  df-iso 4387
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator