| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqr2 | GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preqr2.1 | ⊢ 𝐴 ∈ V |
| preqr2.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preqr2 | ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 3698 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 2 | prcom 3698 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 3 | 1, 2 | eqeq12i 2210 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
| 4 | preqr2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | preqr2.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 6 | 4, 5 | preqr1 3798 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| 7 | 3, 6 | sylbi 121 | 1 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 {cpr 3623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: preq12b 3800 opth 4270 opthreg 4592 |
| Copyright terms: Public domain | W3C validator |