| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > preqr2 | GIF version | ||
| Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| preqr2.1 | ⊢ 𝐴 ∈ V |
| preqr2.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| preqr2 | ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prcom 3708 | . . 3 ⊢ {𝐶, 𝐴} = {𝐴, 𝐶} | |
| 2 | prcom 3708 | . . 3 ⊢ {𝐶, 𝐵} = {𝐵, 𝐶} | |
| 3 | 1, 2 | eqeq12i 2218 | . 2 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶}) |
| 4 | preqr2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 5 | preqr2.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 6 | 4, 5 | preqr1 3808 | . 2 ⊢ ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵) |
| 7 | 3, 6 | sylbi 121 | 1 ⊢ ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 {cpr 3633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-un 3169 df-sn 3638 df-pr 3639 |
| This theorem is referenced by: preq12b 3810 opth 4280 opthreg 4602 |
| Copyright terms: Public domain | W3C validator |