ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preqr2 GIF version

Theorem preqr2 3756
Description: Reverse equality lemma for unordered pairs. If two unordered pairs have the same first element, the second elements are equal. (Contributed by NM, 5-Aug-1993.)
Hypotheses
Ref Expression
preqr2.1 𝐴 ∈ V
preqr2.2 𝐵 ∈ V
Assertion
Ref Expression
preqr2 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)

Proof of Theorem preqr2
StepHypRef Expression
1 prcom 3659 . . 3 {𝐶, 𝐴} = {𝐴, 𝐶}
2 prcom 3659 . . 3 {𝐶, 𝐵} = {𝐵, 𝐶}
31, 2eqeq12i 2184 . 2 ({𝐶, 𝐴} = {𝐶, 𝐵} ↔ {𝐴, 𝐶} = {𝐵, 𝐶})
4 preqr2.1 . . 3 𝐴 ∈ V
5 preqr2.2 . . 3 𝐵 ∈ V
64, 5preqr1 3755 . 2 ({𝐴, 𝐶} = {𝐵, 𝐶} → 𝐴 = 𝐵)
73, 6sylbi 120 1 ({𝐶, 𝐴} = {𝐶, 𝐵} → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1348  wcel 2141  Vcvv 2730  {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-sn 3589  df-pr 3590
This theorem is referenced by:  preq12b  3757  opth  4222  opthreg  4540
  Copyright terms: Public domain W3C validator