Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > preq12b | Unicode version |
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.) |
Ref | Expression |
---|---|
preq12b.1 | |
preq12b.2 | |
preq12b.3 | |
preq12b.4 |
Ref | Expression |
---|---|
preq12b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq12b.1 | . . . . . 6 | |
2 | 1 | prid1 3695 | . . . . 5 |
3 | eleq2 2239 | . . . . 5 | |
4 | 2, 3 | mpbii 148 | . . . 4 |
5 | 1 | elpr 3610 | . . . 4 |
6 | 4, 5 | sylib 122 | . . 3 |
7 | preq1 3666 | . . . . . . . 8 | |
8 | 7 | eqeq1d 2184 | . . . . . . 7 |
9 | preq12b.2 | . . . . . . . 8 | |
10 | preq12b.4 | . . . . . . . 8 | |
11 | 9, 10 | preqr2 3765 | . . . . . . 7 |
12 | 8, 11 | syl6bi 163 | . . . . . 6 |
13 | 12 | com12 30 | . . . . 5 |
14 | 13 | ancld 325 | . . . 4 |
15 | prcom 3665 | . . . . . . 7 | |
16 | 15 | eqeq2i 2186 | . . . . . 6 |
17 | preq1 3666 | . . . . . . . . 9 | |
18 | 17 | eqeq1d 2184 | . . . . . . . 8 |
19 | preq12b.3 | . . . . . . . . 9 | |
20 | 9, 19 | preqr2 3765 | . . . . . . . 8 |
21 | 18, 20 | syl6bi 163 | . . . . . . 7 |
22 | 21 | com12 30 | . . . . . 6 |
23 | 16, 22 | sylbi 121 | . . . . 5 |
24 | 23 | ancld 325 | . . . 4 |
25 | 14, 24 | orim12d 786 | . . 3 |
26 | 6, 25 | mpd 13 | . 2 |
27 | preq12 3668 | . . 3 | |
28 | prcom 3665 | . . . . 5 | |
29 | 17, 28 | eqtrdi 2224 | . . . 4 |
30 | preq1 3666 | . . . 4 | |
31 | 29, 30 | sylan9eq 2228 | . . 3 |
32 | 27, 31 | jaoi 716 | . 2 |
33 | 26, 32 | impbii 126 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wb 105 wo 708 wceq 1353 wcel 2146 cvv 2735 cpr 3590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-v 2737 df-un 3131 df-sn 3595 df-pr 3596 |
This theorem is referenced by: prel12 3767 opthpr 3768 preq12bg 3769 preqsn 3771 opeqpr 4247 preleq 4548 |
Copyright terms: Public domain | W3C validator |