ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  preq12b Unicode version

Theorem preq12b 3750
Description: Equality relationship for two unordered pairs. (Contributed by NM, 17-Oct-1996.)
Hypotheses
Ref Expression
preq12b.1  |-  A  e. 
_V
preq12b.2  |-  B  e. 
_V
preq12b.3  |-  C  e. 
_V
preq12b.4  |-  D  e. 
_V
Assertion
Ref Expression
preq12b  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )

Proof of Theorem preq12b
StepHypRef Expression
1 preq12b.1 . . . . . 6  |-  A  e. 
_V
21prid1 3682 . . . . 5  |-  A  e. 
{ A ,  B }
3 eleq2 2230 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  e. 
{ A ,  B } 
<->  A  e.  { C ,  D } ) )
42, 3mpbii 147 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  A  e.  { C ,  D }
)
51elpr 3597 . . . 4  |-  ( A  e.  { C ,  D }  <->  ( A  =  C  \/  A  =  D ) )
64, 5sylib 121 . . 3  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  C  \/  A  =  D ) )
7 preq1 3653 . . . . . . . 8  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
87eqeq1d 2174 . . . . . . 7  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D } 
<->  { C ,  B }  =  { C ,  D } ) )
9 preq12b.2 . . . . . . . 8  |-  B  e. 
_V
10 preq12b.4 . . . . . . . 8  |-  D  e. 
_V
119, 10preqr2 3749 . . . . . . 7  |-  ( { C ,  B }  =  { C ,  D }  ->  B  =  D )
128, 11syl6bi 162 . . . . . 6  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D }  ->  B  =  D ) )
1312com12 30 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  C  ->  B  =  D ) )
1413ancld 323 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  C  ->  ( A  =  C  /\  B  =  D ) ) )
15 prcom 3652 . . . . . . 7  |-  { C ,  D }  =  { D ,  C }
1615eqeq2i 2176 . . . . . 6  |-  ( { A ,  B }  =  { C ,  D } 
<->  { A ,  B }  =  { D ,  C } )
17 preq1 3653 . . . . . . . . 9  |-  ( A  =  D  ->  { A ,  B }  =  { D ,  B }
)
1817eqeq1d 2174 . . . . . . . 8  |-  ( A  =  D  ->  ( { A ,  B }  =  { D ,  C } 
<->  { D ,  B }  =  { D ,  C } ) )
19 preq12b.3 . . . . . . . . 9  |-  C  e. 
_V
209, 19preqr2 3749 . . . . . . . 8  |-  ( { D ,  B }  =  { D ,  C }  ->  B  =  C )
2118, 20syl6bi 162 . . . . . . 7  |-  ( A  =  D  ->  ( { A ,  B }  =  { D ,  C }  ->  B  =  C ) )
2221com12 30 . . . . . 6  |-  ( { A ,  B }  =  { D ,  C }  ->  ( A  =  D  ->  B  =  C ) )
2316, 22sylbi 120 . . . . 5  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  D  ->  B  =  C ) )
2423ancld 323 . . . 4  |-  ( { A ,  B }  =  { C ,  D }  ->  ( A  =  D  ->  ( A  =  D  /\  B  =  C ) ) )
2514, 24orim12d 776 . . 3  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  \/  A  =  D )  ->  (
( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) ) ) )
266, 25mpd 13 . 2  |-  ( { A ,  B }  =  { C ,  D }  ->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
27 preq12 3655 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
28 prcom 3652 . . . . 5  |-  { D ,  B }  =  { B ,  D }
2917, 28eqtrdi 2215 . . . 4  |-  ( A  =  D  ->  { A ,  B }  =  { B ,  D }
)
30 preq1 3653 . . . 4  |-  ( B  =  C  ->  { B ,  D }  =  { C ,  D }
)
3129, 30sylan9eq 2219 . . 3  |-  ( ( A  =  D  /\  B  =  C )  ->  { A ,  B }  =  { C ,  D } )
3227, 31jaoi 706 . 2  |-  ( ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C ) )  ->  { A ,  B }  =  { C ,  D } )
3326, 32impbii 125 1  |-  ( { A ,  B }  =  { C ,  D } 
<->  ( ( A  =  C  /\  B  =  D )  \/  ( A  =  D  /\  B  =  C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1343    e. wcel 2136   _Vcvv 2726   {cpr 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583
This theorem is referenced by:  prel12  3751  opthpr  3752  preq12bg  3753  preqsn  3755  opeqpr  4231  preleq  4532
  Copyright terms: Public domain W3C validator