| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opthreg | Unicode version | ||
| Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4603 (via the preleq 4621 step). See df-op 3652 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) |
| Ref | Expression |
|---|---|
| preleq.1 |
|
| preleq.2 |
|
| preleq.3 |
|
| preleq.4 |
|
| Ref | Expression |
|---|---|
| opthreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.1 |
. . . . 5
| |
| 2 | 1 | prid1 3749 |
. . . 4
|
| 3 | preleq.3 |
. . . . 5
| |
| 4 | 3 | prid1 3749 |
. . . 4
|
| 5 | preleq.2 |
. . . . . 6
| |
| 6 | prexg 4271 |
. . . . . 6
| |
| 7 | 1, 5, 6 | mp2an 426 |
. . . . 5
|
| 8 | preleq.4 |
. . . . . 6
| |
| 9 | prexg 4271 |
. . . . . 6
| |
| 10 | 3, 8, 9 | mp2an 426 |
. . . . 5
|
| 11 | 1, 7, 3, 10 | preleq 4621 |
. . . 4
|
| 12 | 2, 4, 11 | mpanl12 436 |
. . 3
|
| 13 | preq1 3720 |
. . . . . 6
| |
| 14 | 13 | eqeq1d 2216 |
. . . . 5
|
| 15 | 5, 8 | preqr2 3823 |
. . . . 5
|
| 16 | 14, 15 | biimtrdi 163 |
. . . 4
|
| 17 | 16 | imdistani 445 |
. . 3
|
| 18 | 12, 17 | syl 14 |
. 2
|
| 19 | preq1 3720 |
. . . 4
| |
| 20 | 19 | adantr 276 |
. . 3
|
| 21 | preq12 3722 |
. . . 4
| |
| 22 | 21 | preq2d 3727 |
. . 3
|
| 23 | 20, 22 | eqtrd 2240 |
. 2
|
| 24 | 18, 23 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-dif 3176 df-un 3178 df-sn 3649 df-pr 3650 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |