Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > opthreg | Unicode version |
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4514 (via the preleq 4532 step). See df-op 3585 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) |
Ref | Expression |
---|---|
preleq.1 | |
preleq.2 | |
preleq.3 | |
preleq.4 |
Ref | Expression |
---|---|
opthreg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preleq.1 | . . . . 5 | |
2 | 1 | prid1 3682 | . . . 4 |
3 | preleq.3 | . . . . 5 | |
4 | 3 | prid1 3682 | . . . 4 |
5 | preleq.2 | . . . . . 6 | |
6 | prexg 4189 | . . . . . 6 | |
7 | 1, 5, 6 | mp2an 423 | . . . . 5 |
8 | preleq.4 | . . . . . 6 | |
9 | prexg 4189 | . . . . . 6 | |
10 | 3, 8, 9 | mp2an 423 | . . . . 5 |
11 | 1, 7, 3, 10 | preleq 4532 | . . . 4 |
12 | 2, 4, 11 | mpanl12 433 | . . 3 |
13 | preq1 3653 | . . . . . 6 | |
14 | 13 | eqeq1d 2174 | . . . . 5 |
15 | 5, 8 | preqr2 3749 | . . . . 5 |
16 | 14, 15 | syl6bi 162 | . . . 4 |
17 | 16 | imdistani 442 | . . 3 |
18 | 12, 17 | syl 14 | . 2 |
19 | preq1 3653 | . . . 4 | |
20 | 19 | adantr 274 | . . 3 |
21 | preq12 3655 | . . . 4 | |
22 | 21 | preq2d 3660 | . . 3 |
23 | 20, 22 | eqtrd 2198 | . 2 |
24 | 18, 23 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-dif 3118 df-un 3120 df-sn 3582 df-pr 3583 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |