ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opthreg Unicode version

Theorem opthreg 4557
Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4538 (via the preleq 4556 step). See df-op 3603 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.)
Hypotheses
Ref Expression
preleq.1  |-  A  e. 
_V
preleq.2  |-  B  e. 
_V
preleq.3  |-  C  e. 
_V
preleq.4  |-  D  e. 
_V
Assertion
Ref Expression
opthreg  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )

Proof of Theorem opthreg
StepHypRef Expression
1 preleq.1 . . . . 5  |-  A  e. 
_V
21prid1 3700 . . . 4  |-  A  e. 
{ A ,  B }
3 preleq.3 . . . . 5  |-  C  e. 
_V
43prid1 3700 . . . 4  |-  C  e. 
{ C ,  D }
5 preleq.2 . . . . . 6  |-  B  e. 
_V
6 prexg 4213 . . . . . 6  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  { A ,  B }  e.  _V )
71, 5, 6mp2an 426 . . . . 5  |-  { A ,  B }  e.  _V
8 preleq.4 . . . . . 6  |-  D  e. 
_V
9 prexg 4213 . . . . . 6  |-  ( ( C  e.  _V  /\  D  e.  _V )  ->  { C ,  D }  e.  _V )
103, 8, 9mp2an 426 . . . . 5  |-  { C ,  D }  e.  _V
111, 7, 3, 10preleq 4556 . . . 4  |-  ( ( ( A  e.  { A ,  B }  /\  C  e.  { C ,  D } )  /\  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D }
) )
122, 4, 11mpanl12 436 . . 3  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  { A ,  B }  =  { C ,  D } ) )
13 preq1 3671 . . . . . 6  |-  ( A  =  C  ->  { A ,  B }  =  { C ,  B }
)
1413eqeq1d 2186 . . . . 5  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D } 
<->  { C ,  B }  =  { C ,  D } ) )
155, 8preqr2 3771 . . . . 5  |-  ( { C ,  B }  =  { C ,  D }  ->  B  =  D )
1614, 15biimtrdi 163 . . . 4  |-  ( A  =  C  ->  ( { A ,  B }  =  { C ,  D }  ->  B  =  D ) )
1716imdistani 445 . . 3  |-  ( ( A  =  C  /\  { A ,  B }  =  { C ,  D } )  ->  ( A  =  C  /\  B  =  D )
)
1812, 17syl 14 . 2  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  ->  ( A  =  C  /\  B  =  D )
)
19 preq1 3671 . . . 4  |-  ( A  =  C  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
2019adantr 276 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { A ,  B } } )
21 preq12 3673 . . . 4  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  B }  =  { C ,  D } )
2221preq2d 3678 . . 3  |-  ( ( A  =  C  /\  B  =  D )  ->  { C ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2320, 22eqtrd 2210 . 2  |-  ( ( A  =  C  /\  B  =  D )  ->  { A ,  { A ,  B } }  =  { C ,  { C ,  D } } )
2418, 23impbii 126 1  |-  ( { A ,  { A ,  B } }  =  { C ,  { C ,  D } }  <->  ( A  =  C  /\  B  =  D ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2739   {cpr 3595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-dif 3133  df-un 3135  df-sn 3600  df-pr 3601
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator