| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > opthreg | Unicode version | ||
| Description: Theorem for alternate representation of ordered pairs, requiring the Axiom of Set Induction ax-setind 4573 (via the preleq 4591 step). See df-op 3631 for a description of other ordered pair representations. Exercise 34 of [Enderton] p. 207. (Contributed by NM, 16-Oct-1996.) |
| Ref | Expression |
|---|---|
| preleq.1 |
|
| preleq.2 |
|
| preleq.3 |
|
| preleq.4 |
|
| Ref | Expression |
|---|---|
| opthreg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | preleq.1 |
. . . . 5
| |
| 2 | 1 | prid1 3728 |
. . . 4
|
| 3 | preleq.3 |
. . . . 5
| |
| 4 | 3 | prid1 3728 |
. . . 4
|
| 5 | preleq.2 |
. . . . . 6
| |
| 6 | prexg 4244 |
. . . . . 6
| |
| 7 | 1, 5, 6 | mp2an 426 |
. . . . 5
|
| 8 | preleq.4 |
. . . . . 6
| |
| 9 | prexg 4244 |
. . . . . 6
| |
| 10 | 3, 8, 9 | mp2an 426 |
. . . . 5
|
| 11 | 1, 7, 3, 10 | preleq 4591 |
. . . 4
|
| 12 | 2, 4, 11 | mpanl12 436 |
. . 3
|
| 13 | preq1 3699 |
. . . . . 6
| |
| 14 | 13 | eqeq1d 2205 |
. . . . 5
|
| 15 | 5, 8 | preqr2 3799 |
. . . . 5
|
| 16 | 14, 15 | biimtrdi 163 |
. . . 4
|
| 17 | 16 | imdistani 445 |
. . 3
|
| 18 | 12, 17 | syl 14 |
. 2
|
| 19 | preq1 3699 |
. . . 4
| |
| 20 | 19 | adantr 276 |
. . 3
|
| 21 | preq12 3701 |
. . . 4
| |
| 22 | 21 | preq2d 3706 |
. . 3
|
| 23 | 20, 22 | eqtrd 2229 |
. 2
|
| 24 | 18, 23 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pr 4242 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-un 3161 df-sn 3628 df-pr 3629 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |