ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqb Unicode version

Theorem pweqb 4201
Description: Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
pweqb  |-  ( A  =  B  <->  ~P A  =  ~P B )

Proof of Theorem pweqb
StepHypRef Expression
1 sspwb 4194 . . 3  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
2 sspwb 4194 . . 3  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
31, 2anbi12i 456 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A
) )
4 eqss 3157 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3157 . 2  |-  ( ~P A  =  ~P B  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A ) )
63, 4, 53bitr4i 211 1  |-  ( A  =  B  <->  ~P A  =  ~P B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    C_ wss 3116   ~Pcpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator