ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqb Unicode version

Theorem pweqb 4225
Description: Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
pweqb  |-  ( A  =  B  <->  ~P A  =  ~P B )

Proof of Theorem pweqb
StepHypRef Expression
1 sspwb 4218 . . 3  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
2 sspwb 4218 . . 3  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
31, 2anbi12i 460 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A
) )
4 eqss 3172 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3172 . 2  |-  ( ~P A  =  ~P B  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A ) )
63, 4, 53bitr4i 212 1  |-  ( A  =  B  <->  ~P A  =  ~P B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator