ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pweqb Unicode version

Theorem pweqb 4217
Description: Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
pweqb  |-  ( A  =  B  <->  ~P A  =  ~P B )

Proof of Theorem pweqb
StepHypRef Expression
1 sspwb 4210 . . 3  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
2 sspwb 4210 . . 3  |-  ( B 
C_  A  <->  ~P B  C_ 
~P A )
31, 2anbi12i 460 . 2  |-  ( ( A  C_  B  /\  B  C_  A )  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A
) )
4 eqss 3168 . 2  |-  ( A  =  B  <->  ( A  C_  B  /\  B  C_  A ) )
5 eqss 3168 . 2  |-  ( ~P A  =  ~P B  <->  ( ~P A  C_  ~P B  /\  ~P B  C_  ~P A ) )
63, 4, 53bitr4i 212 1  |-  ( A  =  B  <->  ~P A  =  ~P B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353    C_ wss 3127   ~Pcpw 3572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-v 2737  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator