Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pweqb | GIF version |
Description: Classes are equal if and only if their power classes are equal. Exercise 19 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
Ref | Expression |
---|---|
pweqb | ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspwb 4175 | . . 3 ⊢ (𝐴 ⊆ 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵) | |
2 | sspwb 4175 | . . 3 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝒫 𝐵 ⊆ 𝒫 𝐴) | |
3 | 1, 2 | anbi12i 456 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴) ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴)) |
4 | eqss 3143 | . 2 ⊢ (𝐴 = 𝐵 ↔ (𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴)) | |
5 | eqss 3143 | . 2 ⊢ (𝒫 𝐴 = 𝒫 𝐵 ↔ (𝒫 𝐴 ⊆ 𝒫 𝐵 ∧ 𝒫 𝐵 ⊆ 𝒫 𝐴)) | |
6 | 3, 4, 5 | 3bitr4i 211 | 1 ⊢ (𝐴 = 𝐵 ↔ 𝒫 𝐴 = 𝒫 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 = wceq 1335 ⊆ wss 3102 𝒫 cpw 3543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |