ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb Unicode version

Theorem sspwb 4261
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )

Proof of Theorem sspwb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3200 . . . . 5  |-  ( x 
C_  A  ->  ( A  C_  B  ->  x  C_  B ) )
21com12 30 . . . 4  |-  ( A 
C_  B  ->  (
x  C_  A  ->  x 
C_  B ) )
3 vex 2775 . . . . 5  |-  x  e. 
_V
43elpw 3622 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3622 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
62, 4, 53imtr4g 205 . . 3  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
76ssrdv 3199 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
8 ssel 3187 . . . 4  |-  ( ~P A  C_  ~P B  ->  ( { x }  e.  ~P A  ->  { x }  e.  ~P B
) )
93snex 4230 . . . . . 6  |-  { x }  e.  _V
109elpw 3622 . . . . 5  |-  ( { x }  e.  ~P A 
<->  { x }  C_  A )
113snss 3768 . . . . 5  |-  ( x  e.  A  <->  { x }  C_  A )
1210, 11bitr4i 187 . . . 4  |-  ( { x }  e.  ~P A 
<->  x  e.  A )
139elpw 3622 . . . . 5  |-  ( { x }  e.  ~P B 
<->  { x }  C_  B )
143snss 3768 . . . . 5  |-  ( x  e.  B  <->  { x }  C_  B )
1513, 14bitr4i 187 . . . 4  |-  ( { x }  e.  ~P B 
<->  x  e.  B )
168, 12, 153imtr3g 204 . . 3  |-  ( ~P A  C_  ~P B  ->  ( x  e.  A  ->  x  e.  B ) )
1716ssrdv 3199 . 2  |-  ( ~P A  C_  ~P B  ->  A  C_  B )
187, 17impbii 126 1  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2176    C_ wss 3166   ~Pcpw 3616   {csn 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639
This theorem is referenced by:  pwel  4263  ssextss  4265  pweqb  4268  fiss  7081  pw1on  7340  ntrss  14624
  Copyright terms: Public domain W3C validator