ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb Unicode version

Theorem sspwb 4278
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )

Proof of Theorem sspwb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3208 . . . . 5  |-  ( x 
C_  A  ->  ( A  C_  B  ->  x  C_  B ) )
21com12 30 . . . 4  |-  ( A 
C_  B  ->  (
x  C_  A  ->  x 
C_  B ) )
3 vex 2779 . . . . 5  |-  x  e. 
_V
43elpw 3632 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3632 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
62, 4, 53imtr4g 205 . . 3  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
76ssrdv 3207 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
8 ssel 3195 . . . 4  |-  ( ~P A  C_  ~P B  ->  ( { x }  e.  ~P A  ->  { x }  e.  ~P B
) )
93snex 4245 . . . . . 6  |-  { x }  e.  _V
109elpw 3632 . . . . 5  |-  ( { x }  e.  ~P A 
<->  { x }  C_  A )
113snss 3779 . . . . 5  |-  ( x  e.  A  <->  { x }  C_  A )
1210, 11bitr4i 187 . . . 4  |-  ( { x }  e.  ~P A 
<->  x  e.  A )
139elpw 3632 . . . . 5  |-  ( { x }  e.  ~P B 
<->  { x }  C_  B )
143snss 3779 . . . . 5  |-  ( x  e.  B  <->  { x }  C_  B )
1513, 14bitr4i 187 . . . 4  |-  ( { x }  e.  ~P B 
<->  x  e.  B )
168, 12, 153imtr3g 204 . . 3  |-  ( ~P A  C_  ~P B  ->  ( x  e.  A  ->  x  e.  B ) )
1716ssrdv 3207 . 2  |-  ( ~P A  C_  ~P B  ->  A  C_  B )
187, 17impbii 126 1  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2178    C_ wss 3174   ~Pcpw 3626   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649
This theorem is referenced by:  pwel  4280  ssextss  4282  pweqb  4285  fiss  7105  pw1on  7372  ntrss  14706
  Copyright terms: Public domain W3C validator