| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sspwb | Unicode version | ||
| Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) | 
| Ref | Expression | 
|---|---|
| sspwb | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstr2 3190 | 
. . . . 5
 | |
| 2 | 1 | com12 30 | 
. . . 4
 | 
| 3 | vex 2766 | 
. . . . 5
 | |
| 4 | 3 | elpw 3611 | 
. . . 4
 | 
| 5 | 3 | elpw 3611 | 
. . . 4
 | 
| 6 | 2, 4, 5 | 3imtr4g 205 | 
. . 3
 | 
| 7 | 6 | ssrdv 3189 | 
. 2
 | 
| 8 | ssel 3177 | 
. . . 4
 | |
| 9 | 3 | snex 4218 | 
. . . . . 6
 | 
| 10 | 9 | elpw 3611 | 
. . . . 5
 | 
| 11 | 3 | snss 3757 | 
. . . . 5
 | 
| 12 | 10, 11 | bitr4i 187 | 
. . . 4
 | 
| 13 | 9 | elpw 3611 | 
. . . . 5
 | 
| 14 | 3 | snss 3757 | 
. . . . 5
 | 
| 15 | 13, 14 | bitr4i 187 | 
. . . 4
 | 
| 16 | 8, 12, 15 | 3imtr3g 204 | 
. . 3
 | 
| 17 | 16 | ssrdv 3189 | 
. 2
 | 
| 18 | 7, 17 | impbii 126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 | 
| This theorem is referenced by: pwel 4251 ssextss 4253 pweqb 4256 fiss 7043 pw1on 7293 ntrss 14355 | 
| Copyright terms: Public domain | W3C validator |