ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sspwb Unicode version

Theorem sspwb 4201
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.)
Assertion
Ref Expression
sspwb  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )

Proof of Theorem sspwb
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sstr2 3154 . . . . 5  |-  ( x 
C_  A  ->  ( A  C_  B  ->  x  C_  B ) )
21com12 30 . . . 4  |-  ( A 
C_  B  ->  (
x  C_  A  ->  x 
C_  B ) )
3 vex 2733 . . . . 5  |-  x  e. 
_V
43elpw 3572 . . . 4  |-  ( x  e.  ~P A  <->  x  C_  A
)
53elpw 3572 . . . 4  |-  ( x  e.  ~P B  <->  x  C_  B
)
62, 4, 53imtr4g 204 . . 3  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
76ssrdv 3153 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
8 ssel 3141 . . . 4  |-  ( ~P A  C_  ~P B  ->  ( { x }  e.  ~P A  ->  { x }  e.  ~P B
) )
93snex 4171 . . . . . 6  |-  { x }  e.  _V
109elpw 3572 . . . . 5  |-  ( { x }  e.  ~P A 
<->  { x }  C_  A )
113snss 3709 . . . . 5  |-  ( x  e.  A  <->  { x }  C_  A )
1210, 11bitr4i 186 . . . 4  |-  ( { x }  e.  ~P A 
<->  x  e.  A )
139elpw 3572 . . . . 5  |-  ( { x }  e.  ~P B 
<->  { x }  C_  B )
143snss 3709 . . . . 5  |-  ( x  e.  B  <->  { x }  C_  B )
1513, 14bitr4i 186 . . . 4  |-  ( { x }  e.  ~P B 
<->  x  e.  B )
168, 12, 153imtr3g 203 . . 3  |-  ( ~P A  C_  ~P B  ->  ( x  e.  A  ->  x  e.  B ) )
1716ssrdv 3153 . 2  |-  ( ~P A  C_  ~P B  ->  A  C_  B )
187, 17impbii 125 1  |-  ( A 
C_  B  <->  ~P A  C_ 
~P B )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    e. wcel 2141    C_ wss 3121   ~Pcpw 3566   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589
This theorem is referenced by:  pwel  4203  ssextss  4205  pweqb  4208  fiss  6954  pw1on  7203  ntrss  12913
  Copyright terms: Public domain W3C validator