Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sspwb | Unicode version |
Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
Ref | Expression |
---|---|
sspwb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sstr2 3149 | . . . . 5 | |
2 | 1 | com12 30 | . . . 4 |
3 | vex 2729 | . . . . 5 | |
4 | 3 | elpw 3565 | . . . 4 |
5 | 3 | elpw 3565 | . . . 4 |
6 | 2, 4, 5 | 3imtr4g 204 | . . 3 |
7 | 6 | ssrdv 3148 | . 2 |
8 | ssel 3136 | . . . 4 | |
9 | 3 | snex 4164 | . . . . . 6 |
10 | 9 | elpw 3565 | . . . . 5 |
11 | 3 | snss 3702 | . . . . 5 |
12 | 10, 11 | bitr4i 186 | . . . 4 |
13 | 9 | elpw 3565 | . . . . 5 |
14 | 3 | snss 3702 | . . . . 5 |
15 | 13, 14 | bitr4i 186 | . . . 4 |
16 | 8, 12, 15 | 3imtr3g 203 | . . 3 |
17 | 16 | ssrdv 3148 | . 2 |
18 | 7, 17 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2136 wss 3116 cpw 3559 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 |
This theorem is referenced by: pwel 4196 ssextss 4198 pweqb 4201 fiss 6942 pw1on 7182 ntrss 12759 |
Copyright terms: Public domain | W3C validator |