| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwb | Unicode version | ||
| Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| Ref | Expression |
|---|---|
| sspwb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3200 |
. . . . 5
| |
| 2 | 1 | com12 30 |
. . . 4
|
| 3 | vex 2775 |
. . . . 5
| |
| 4 | 3 | elpw 3622 |
. . . 4
|
| 5 | 3 | elpw 3622 |
. . . 4
|
| 6 | 2, 4, 5 | 3imtr4g 205 |
. . 3
|
| 7 | 6 | ssrdv 3199 |
. 2
|
| 8 | ssel 3187 |
. . . 4
| |
| 9 | 3 | snex 4230 |
. . . . . 6
|
| 10 | 9 | elpw 3622 |
. . . . 5
|
| 11 | 3 | snss 3768 |
. . . . 5
|
| 12 | 10, 11 | bitr4i 187 |
. . . 4
|
| 13 | 9 | elpw 3622 |
. . . . 5
|
| 14 | 3 | snss 3768 |
. . . . 5
|
| 15 | 13, 14 | bitr4i 187 |
. . . 4
|
| 16 | 8, 12, 15 | 3imtr3g 204 |
. . 3
|
| 17 | 16 | ssrdv 3199 |
. 2
|
| 18 | 7, 17 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 |
| This theorem is referenced by: pwel 4263 ssextss 4265 pweqb 4268 fiss 7081 pw1on 7340 ntrss 14624 |
| Copyright terms: Public domain | W3C validator |