| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sspwb | Unicode version | ||
| Description: Classes are subclasses if and only if their power classes are subclasses. Exercise 18 of [TakeutiZaring] p. 18. (Contributed by NM, 13-Oct-1996.) |
| Ref | Expression |
|---|---|
| sspwb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstr2 3191 |
. . . . 5
| |
| 2 | 1 | com12 30 |
. . . 4
|
| 3 | vex 2766 |
. . . . 5
| |
| 4 | 3 | elpw 3612 |
. . . 4
|
| 5 | 3 | elpw 3612 |
. . . 4
|
| 6 | 2, 4, 5 | 3imtr4g 205 |
. . 3
|
| 7 | 6 | ssrdv 3190 |
. 2
|
| 8 | ssel 3178 |
. . . 4
| |
| 9 | 3 | snex 4219 |
. . . . . 6
|
| 10 | 9 | elpw 3612 |
. . . . 5
|
| 11 | 3 | snss 3758 |
. . . . 5
|
| 12 | 10, 11 | bitr4i 187 |
. . . 4
|
| 13 | 9 | elpw 3612 |
. . . . 5
|
| 14 | 3 | snss 3758 |
. . . . 5
|
| 15 | 13, 14 | bitr4i 187 |
. . . 4
|
| 16 | 8, 12, 15 | 3imtr3g 204 |
. . 3
|
| 17 | 16 | ssrdv 3190 |
. 2
|
| 18 | 7, 17 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 |
| This theorem is referenced by: pwel 4252 ssextss 4254 pweqb 4257 fiss 7052 pw1on 7309 ntrss 14439 |
| Copyright terms: Public domain | W3C validator |