ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwid Unicode version

Theorem pwid 3592
Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
pwid.1  |-  A  e. 
_V
Assertion
Ref Expression
pwid  |-  A  e. 
~P A

Proof of Theorem pwid
StepHypRef Expression
1 pwid.1 . 2  |-  A  e. 
_V
2 pwidg 3591 . 2  |-  ( A  e.  _V  ->  A  e.  ~P A )
31, 2ax-mp 5 1  |-  A  e. 
~P A
Colors of variables: wff set class
Syntax hints:    e. wcel 2148   _Vcvv 2739   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by:  pwnex  4451  pw1fin  6912  bastg  13600  pw1nct  14791
  Copyright terms: Public domain W3C validator