Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwnex | Unicode version |
Description: The class of all power sets is a proper class. See also snnex 4433. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
pwnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 4432 | . . 3 | |
2 | df-nel 2436 | . . 3 | |
3 | 1, 2 | sylibr 133 | . 2 |
4 | vpwex 4165 | . . 3 | |
5 | vex 2733 | . . . 4 | |
6 | 5 | pwid 3581 | . . 3 |
7 | 4, 6 | pm3.2i 270 | . 2 |
8 | 3, 7 | mpg 1444 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wal 1346 wceq 1348 wex 1485 wcel 2141 cab 2156 wnel 2435 cvv 2730 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-nel 2436 df-ral 2453 df-rex 2454 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-uni 3797 df-iun 3875 |
This theorem is referenced by: topnex 12880 |
Copyright terms: Public domain | W3C validator |