| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwnex | Unicode version | ||
| Description: The class of all power sets is a proper class. See also snnex 4499. (Contributed by BJ, 2-May-2021.) |
| Ref | Expression |
|---|---|
| pwnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abnex 4498 |
. . 3
| |
| 2 | df-nel 2473 |
. . 3
| |
| 3 | 1, 2 | sylibr 134 |
. 2
|
| 4 | vpwex 4227 |
. . 3
| |
| 5 | vex 2776 |
. . . 4
| |
| 6 | 5 | pwid 3632 |
. . 3
|
| 7 | 4, 6 | pm3.2i 272 |
. 2
|
| 8 | 3, 7 | mpg 1475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-nel 2473 df-ral 2490 df-rex 2491 df-v 2775 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-uni 3853 df-iun 3931 |
| This theorem is referenced by: topnex 14602 |
| Copyright terms: Public domain | W3C validator |