Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwnex | Unicode version |
Description: The class of all power sets is a proper class. See also snnex 4426. (Contributed by BJ, 2-May-2021.) |
Ref | Expression |
---|---|
pwnex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abnex 4425 | . . 3 | |
2 | df-nel 2432 | . . 3 | |
3 | 1, 2 | sylibr 133 | . 2 |
4 | vpwex 4158 | . . 3 | |
5 | vex 2729 | . . . 4 | |
6 | 5 | pwid 3574 | . . 3 |
7 | 4, 6 | pm3.2i 270 | . 2 |
8 | 3, 7 | mpg 1439 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wal 1341 wceq 1343 wex 1480 wcel 2136 cab 2151 wnel 2431 cvv 2726 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-nel 2432 df-ral 2449 df-rex 2450 df-v 2728 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-uni 3790 df-iun 3868 |
This theorem is referenced by: topnex 12726 |
Copyright terms: Public domain | W3C validator |