ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwnex Unicode version

Theorem pwnex 4480
Description: The class of all power sets is a proper class. See also snnex 4479. (Contributed by BJ, 2-May-2021.)
Assertion
Ref Expression
pwnex  |-  { x  |  E. y  x  =  ~P y }  e/  _V
Distinct variable group:    x, y

Proof of Theorem pwnex
StepHypRef Expression
1 abnex 4478 . . 3  |-  ( A. y ( ~P y  e.  _V  /\  y  e. 
~P y )  ->  -.  { x  |  E. y  x  =  ~P y }  e.  _V )
2 df-nel 2460 . . 3  |-  ( { x  |  E. y  x  =  ~P y }  e/  _V  <->  -.  { x  |  E. y  x  =  ~P y }  e.  _V )
31, 2sylibr 134 . 2  |-  ( A. y ( ~P y  e.  _V  /\  y  e. 
~P y )  ->  { x  |  E. y  x  =  ~P y }  e/  _V )
4 vpwex 4208 . . 3  |-  ~P y  e.  _V
5 vex 2763 . . . 4  |-  y  e. 
_V
65pwid 3616 . . 3  |-  y  e. 
~P y
74, 6pm3.2i 272 . 2  |-  ( ~P y  e.  _V  /\  y  e.  ~P y
)
83, 7mpg 1462 1  |-  { x  |  E. y  x  =  ~P y }  e/  _V
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1503    e. wcel 2164   {cab 2179    e/ wnel 2459   _Vcvv 2760   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-ral 2477  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836  df-iun 3914
This theorem is referenced by:  topnex  14254
  Copyright terms: Public domain W3C validator