| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bastg | Unicode version | ||
| Description: A member of a basis is a subset of the topology it generates. (Contributed by NM, 16-Jul-2006.) (Revised by Mario Carneiro, 10-Jan-2015.) |
| Ref | Expression |
|---|---|
| bastg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 110 |
. . . . . 6
| |
| 2 | vex 2775 |
. . . . . . . 8
| |
| 3 | 2 | pwid 3631 |
. . . . . . 7
|
| 4 | 3 | a1i 9 |
. . . . . 6
|
| 5 | 1, 4 | elind 3358 |
. . . . 5
|
| 6 | elssuni 3878 |
. . . . 5
| |
| 7 | 5, 6 | syl 14 |
. . . 4
|
| 8 | 7 | ex 115 |
. . 3
|
| 9 | eltg 14524 |
. . 3
| |
| 10 | 8, 9 | sylibrd 169 |
. 2
|
| 11 | 10 | ssrdv 3199 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-topgen 13092 |
| This theorem is referenced by: unitg 14534 tgclb 14537 tgtop 14540 tgidm 14546 tgss3 14550 bastop2 14556 tgcn 14680 tgcnp 14681 txopn 14737 txbasval 14739 blssopn 14957 xmettxlem 14981 iooretopg 15000 |
| Copyright terms: Public domain | W3C validator |