ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1fin Unicode version

Theorem pw1fin 7068
Description: Excluded middle is equivalent to the power set of  1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
Assertion
Ref Expression
pw1fin  |-  (EXMID  <->  ~P 1o  e.  Fin )

Proof of Theorem pw1fin
StepHypRef Expression
1 exmidpweq 7067 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
21biimpi 120 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
3 2onn 6665 . . . 4  |-  2o  e.  om
4 nnfi 7030 . . . 4  |-  ( 2o  e.  om  ->  2o  e.  Fin )
53, 4ax-mp 5 . . 3  |-  2o  e.  Fin
62, 5eqeltrdi 2320 . 2  |-  (EXMID  ->  ~P 1o  e.  Fin )
7 df1o2 6573 . . . . . 6  |-  1o  =  { (/) }
87sseq2i 3251 . . . . 5  |-  ( x 
C_  1o  <->  x  C_  { (/) } )
9 velpw 3656 . . . . . 6  |-  ( x  e.  ~P 1o  <->  x  C_  1o )
10 1oex 6568 . . . . . . . 8  |-  1o  e.  _V
1110pwid 3664 . . . . . . 7  |-  1o  e.  ~P 1o
12 fidceq 7027 . . . . . . 7  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o  /\  1o  e.  ~P 1o )  -> DECID 
x  =  1o )
1311, 12mp3an3 1360 . . . . . 6  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o )  -> DECID 
x  =  1o )
149, 13sylan2br 288 . . . . 5  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  1o )  -> DECID  x  =  1o )
158, 14sylan2br 288 . . . 4  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  1o )
167eqeq2i 2240 . . . . 5  |-  ( x  =  1o  <->  x  =  { (/) } )
1716dcbii 845 . . . 4  |-  (DECID  x  =  1o  <-> DECID  x  =  { (/) } )
1815, 17sylib 122 . . 3  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  { (/) } )
1918exmid1dc 4283 . 2  |-  ( ~P 1o  e.  Fin  -> EXMID )
206, 19impbii 126 1  |-  (EXMID  <->  ~P 1o  e.  Fin )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 839    = wceq 1395    e. wcel 2200    C_ wss 3197   (/)c0 3491   ~Pcpw 3649   {csn 3666  EXMIDwem 4277   omcom 4681   1oc1o 6553   2oc2o 6554   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-tr 4182  df-exmid 4278  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1o 6560  df-2o 6561  df-en 6886  df-fin 6888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator