| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1fin | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of |
| Ref | Expression |
|---|---|
| pw1fin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidpweq 7032 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2onn 6630 |
. . . 4
| |
| 4 | nnfi 6995 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | eqeltrdi 2298 |
. 2
|
| 7 | df1o2 6538 |
. . . . . 6
| |
| 8 | 7 | sseq2i 3228 |
. . . . 5
|
| 9 | velpw 3633 |
. . . . . 6
| |
| 10 | 1oex 6533 |
. . . . . . . 8
| |
| 11 | 10 | pwid 3641 |
. . . . . . 7
|
| 12 | fidceq 6992 |
. . . . . . 7
| |
| 13 | 11, 12 | mp3an3 1339 |
. . . . . 6
|
| 14 | 9, 13 | sylan2br 288 |
. . . . 5
|
| 15 | 8, 14 | sylan2br 288 |
. . . 4
|
| 16 | 7 | eqeq2i 2218 |
. . . . 5
|
| 17 | 16 | dcbii 842 |
. . . 4
|
| 18 | 15, 17 | sylib 122 |
. . 3
|
| 19 | 18 | exmid1dc 4260 |
. 2
|
| 20 | 6, 19 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-tr 4159 df-exmid 4255 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1o 6525 df-2o 6526 df-en 6851 df-fin 6853 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |