ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1fin Unicode version

Theorem pw1fin 7033
Description: Excluded middle is equivalent to the power set of  1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
Assertion
Ref Expression
pw1fin  |-  (EXMID  <->  ~P 1o  e.  Fin )

Proof of Theorem pw1fin
StepHypRef Expression
1 exmidpweq 7032 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
21biimpi 120 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
3 2onn 6630 . . . 4  |-  2o  e.  om
4 nnfi 6995 . . . 4  |-  ( 2o  e.  om  ->  2o  e.  Fin )
53, 4ax-mp 5 . . 3  |-  2o  e.  Fin
62, 5eqeltrdi 2298 . 2  |-  (EXMID  ->  ~P 1o  e.  Fin )
7 df1o2 6538 . . . . . 6  |-  1o  =  { (/) }
87sseq2i 3228 . . . . 5  |-  ( x 
C_  1o  <->  x  C_  { (/) } )
9 velpw 3633 . . . . . 6  |-  ( x  e.  ~P 1o  <->  x  C_  1o )
10 1oex 6533 . . . . . . . 8  |-  1o  e.  _V
1110pwid 3641 . . . . . . 7  |-  1o  e.  ~P 1o
12 fidceq 6992 . . . . . . 7  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o  /\  1o  e.  ~P 1o )  -> DECID 
x  =  1o )
1311, 12mp3an3 1339 . . . . . 6  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o )  -> DECID 
x  =  1o )
149, 13sylan2br 288 . . . . 5  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  1o )  -> DECID  x  =  1o )
158, 14sylan2br 288 . . . 4  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  1o )
167eqeq2i 2218 . . . . 5  |-  ( x  =  1o  <->  x  =  { (/) } )
1716dcbii 842 . . . 4  |-  (DECID  x  =  1o  <-> DECID  x  =  { (/) } )
1815, 17sylib 122 . . 3  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  { (/) } )
1918exmid1dc 4260 . 2  |-  ( ~P 1o  e.  Fin  -> EXMID )
206, 19impbii 126 1  |-  (EXMID  <->  ~P 1o  e.  Fin )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178    C_ wss 3174   (/)c0 3468   ~Pcpw 3626   {csn 3643  EXMIDwem 4254   omcom 4656   1oc1o 6518   2oc2o 6519   Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-tr 4159  df-exmid 4255  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1o 6525  df-2o 6526  df-en 6851  df-fin 6853
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator