ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1fin Unicode version

Theorem pw1fin 6966
Description: Excluded middle is equivalent to the power set of  1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
Assertion
Ref Expression
pw1fin  |-  (EXMID  <->  ~P 1o  e.  Fin )

Proof of Theorem pw1fin
StepHypRef Expression
1 exmidpweq 6965 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
21biimpi 120 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
3 2onn 6574 . . . 4  |-  2o  e.  om
4 nnfi 6928 . . . 4  |-  ( 2o  e.  om  ->  2o  e.  Fin )
53, 4ax-mp 5 . . 3  |-  2o  e.  Fin
62, 5eqeltrdi 2284 . 2  |-  (EXMID  ->  ~P 1o  e.  Fin )
7 df1o2 6482 . . . . . 6  |-  1o  =  { (/) }
87sseq2i 3206 . . . . 5  |-  ( x 
C_  1o  <->  x  C_  { (/) } )
9 velpw 3608 . . . . . 6  |-  ( x  e.  ~P 1o  <->  x  C_  1o )
10 1oex 6477 . . . . . . . 8  |-  1o  e.  _V
1110pwid 3616 . . . . . . 7  |-  1o  e.  ~P 1o
12 fidceq 6925 . . . . . . 7  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o  /\  1o  e.  ~P 1o )  -> DECID 
x  =  1o )
1311, 12mp3an3 1337 . . . . . 6  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o )  -> DECID 
x  =  1o )
149, 13sylan2br 288 . . . . 5  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  1o )  -> DECID  x  =  1o )
158, 14sylan2br 288 . . . 4  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  1o )
167eqeq2i 2204 . . . . 5  |-  ( x  =  1o  <->  x  =  { (/) } )
1716dcbii 841 . . . 4  |-  (DECID  x  =  1o  <-> DECID  x  =  { (/) } )
1815, 17sylib 122 . . 3  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  { (/) } )
1918exmid1dc 4229 . 2  |-  ( ~P 1o  e.  Fin  -> EXMID )
206, 19impbii 126 1  |-  (EXMID  <->  ~P 1o  e.  Fin )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164    C_ wss 3153   (/)c0 3446   ~Pcpw 3601   {csn 3618  EXMIDwem 4223   omcom 4622   1oc1o 6462   2oc2o 6463   Fincfn 6794
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-tr 4128  df-exmid 4224  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1o 6469  df-2o 6470  df-en 6795  df-fin 6797
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator