ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw1fin Unicode version

Theorem pw1fin 7006
Description: Excluded middle is equivalent to the power set of  1o being finite. (Contributed by SN and Jim Kingdon, 7-Aug-2024.)
Assertion
Ref Expression
pw1fin  |-  (EXMID  <->  ~P 1o  e.  Fin )

Proof of Theorem pw1fin
StepHypRef Expression
1 exmidpweq 7005 . . . 4  |-  (EXMID  <->  ~P 1o  =  2o )
21biimpi 120 . . 3  |-  (EXMID  ->  ~P 1o  =  2o )
3 2onn 6606 . . . 4  |-  2o  e.  om
4 nnfi 6968 . . . 4  |-  ( 2o  e.  om  ->  2o  e.  Fin )
53, 4ax-mp 5 . . 3  |-  2o  e.  Fin
62, 5eqeltrdi 2295 . 2  |-  (EXMID  ->  ~P 1o  e.  Fin )
7 df1o2 6514 . . . . . 6  |-  1o  =  { (/) }
87sseq2i 3219 . . . . 5  |-  ( x 
C_  1o  <->  x  C_  { (/) } )
9 velpw 3622 . . . . . 6  |-  ( x  e.  ~P 1o  <->  x  C_  1o )
10 1oex 6509 . . . . . . . 8  |-  1o  e.  _V
1110pwid 3630 . . . . . . 7  |-  1o  e.  ~P 1o
12 fidceq 6965 . . . . . . 7  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o  /\  1o  e.  ~P 1o )  -> DECID 
x  =  1o )
1311, 12mp3an3 1338 . . . . . 6  |-  ( ( ~P 1o  e.  Fin  /\  x  e.  ~P 1o )  -> DECID 
x  =  1o )
149, 13sylan2br 288 . . . . 5  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  1o )  -> DECID  x  =  1o )
158, 14sylan2br 288 . . . 4  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  1o )
167eqeq2i 2215 . . . . 5  |-  ( x  =  1o  <->  x  =  { (/) } )
1716dcbii 841 . . . 4  |-  (DECID  x  =  1o  <-> DECID  x  =  { (/) } )
1815, 17sylib 122 . . 3  |-  ( ( ~P 1o  e.  Fin  /\  x  C_  { (/) } )  -> DECID 
x  =  { (/) } )
1918exmid1dc 4243 . 2  |-  ( ~P 1o  e.  Fin  -> EXMID )
206, 19impbii 126 1  |-  (EXMID  <->  ~P 1o  e.  Fin )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1372    e. wcel 2175    C_ wss 3165   (/)c0 3459   ~Pcpw 3615   {csn 3632  EXMIDwem 4237   omcom 4637   1oc1o 6494   2oc2o 6495   Fincfn 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-v 2773  df-sbc 2998  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-br 4044  df-opab 4105  df-tr 4142  df-exmid 4238  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1o 6501  df-2o 6502  df-en 6827  df-fin 6829
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator