| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pw1fin | Unicode version | ||
| Description: Excluded middle is
equivalent to the power set of |
| Ref | Expression |
|---|---|
| pw1fin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exmidpweq 6979 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2onn 6588 |
. . . 4
| |
| 4 | nnfi 6942 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | eqeltrdi 2287 |
. 2
|
| 7 | df1o2 6496 |
. . . . . 6
| |
| 8 | 7 | sseq2i 3211 |
. . . . 5
|
| 9 | velpw 3613 |
. . . . . 6
| |
| 10 | 1oex 6491 |
. . . . . . . 8
| |
| 11 | 10 | pwid 3621 |
. . . . . . 7
|
| 12 | fidceq 6939 |
. . . . . . 7
| |
| 13 | 11, 12 | mp3an3 1337 |
. . . . . 6
|
| 14 | 9, 13 | sylan2br 288 |
. . . . 5
|
| 15 | 8, 14 | sylan2br 288 |
. . . 4
|
| 16 | 7 | eqeq2i 2207 |
. . . . 5
|
| 17 | 16 | dcbii 841 |
. . . 4
|
| 18 | 15, 17 | sylib 122 |
. . 3
|
| 19 | 18 | exmid1dc 4234 |
. 2
|
| 20 | 6, 19 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-tr 4133 df-exmid 4229 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-1o 6483 df-2o 6484 df-en 6809 df-fin 6811 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |