ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwidg Unicode version

Theorem pwidg 3573
Description: Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
pwidg  |-  ( A  e.  V  ->  A  e.  ~P A )

Proof of Theorem pwidg
StepHypRef Expression
1 ssid 3162 . 2  |-  A  C_  A
2 elpwg 3567 . 2  |-  ( A  e.  V  ->  ( A  e.  ~P A  <->  A 
C_  A ) )
31, 2mpbiri 167 1  |-  ( A  e.  V  ->  A  e.  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    C_ wss 3116   ~Pcpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  pwid  3574  axpweq  4150  baspartn  12688  epttop  12730  isopn3  12765
  Copyright terms: Public domain W3C validator