ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwidg Unicode version

Theorem pwidg 3630
Description: Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
pwidg  |-  ( A  e.  V  ->  A  e.  ~P A )

Proof of Theorem pwidg
StepHypRef Expression
1 ssid 3213 . 2  |-  A  C_  A
2 elpwg 3624 . 2  |-  ( A  e.  V  ->  ( A  e.  ~P A  <->  A 
C_  A ) )
31, 2mpbiri 168 1  |-  ( A  e.  V  ->  A  e.  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176    C_ wss 3166   ~Pcpw 3616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618
This theorem is referenced by:  pwid  3631  axpweq  4215  baspartn  14522  epttop  14562  isopn3  14597
  Copyright terms: Public domain W3C validator