ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwidg Unicode version

Theorem pwidg 3640
Description: Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
pwidg  |-  ( A  e.  V  ->  A  e.  ~P A )

Proof of Theorem pwidg
StepHypRef Expression
1 ssid 3221 . 2  |-  A  C_  A
2 elpwg 3634 . 2  |-  ( A  e.  V  ->  ( A  e.  ~P A  <->  A 
C_  A ) )
31, 2mpbiri 168 1  |-  ( A  e.  V  ->  A  e.  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2178    C_ wss 3174   ~Pcpw 3626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-in 3180  df-ss 3187  df-pw 3628
This theorem is referenced by:  pwid  3641  axpweq  4231  baspartn  14637  epttop  14677  isopn3  14712
  Copyright terms: Public domain W3C validator