Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwid | GIF version |
Description: A set is a member of its power class. Theorem 87 of [Suppes] p. 47. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
pwid.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
pwid | ⊢ 𝐴 ∈ 𝒫 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwid.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | pwidg 3580 | . 2 ⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ 𝐴 ∈ 𝒫 𝐴 |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 Vcvv 2730 𝒫 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: pwnex 4434 pw1fin 6888 bastg 12855 pw1nct 14036 |
Copyright terms: Public domain | W3C validator |