ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwab Unicode version

Theorem pwpwab 3960
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Distinct variable group:    x, A

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 2733 . . 3  |-  x  e. 
_V
2 elpwpw 3959 . . 3  |-  ( x  e.  ~P ~P A  <->  ( x  e.  _V  /\  U. x  C_  A )
)
31, 2mpbiran 935 . 2  |-  ( x  e.  ~P ~P A  <->  U. x  C_  A )
43abbi2i 2285 1  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   {cab 2156   _Vcvv 2730    C_ wss 3121   ~Pcpw 3566   U.cuni 3796
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-pw 3568  df-uni 3797
This theorem is referenced by:  pwpwssunieq  3961
  Copyright terms: Public domain W3C validator