ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwab Unicode version

Theorem pwpwab 4004
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Distinct variable group:    x, A

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 2766 . . 3  |-  x  e. 
_V
2 elpwpw 4003 . . 3  |-  ( x  e.  ~P ~P A  <->  ( x  e.  _V  /\  U. x  C_  A )
)
31, 2mpbiran 942 . 2  |-  ( x  e.  ~P ~P A  <->  U. x  C_  A )
43abbi2i 2311 1  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2167   {cab 2182   _Vcvv 2763    C_ wss 3157   ~Pcpw 3605   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840
This theorem is referenced by:  pwpwssunieq  4005
  Copyright terms: Public domain W3C validator