ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwab Unicode version

Theorem pwpwab 4015
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Distinct variable group:    x, A

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 2775 . . 3  |-  x  e. 
_V
2 elpwpw 4014 . . 3  |-  ( x  e.  ~P ~P A  <->  ( x  e.  _V  /\  U. x  C_  A )
)
31, 2mpbiran 943 . 2  |-  ( x  e.  ~P ~P A  <->  U. x  C_  A )
43abbi2i 2320 1  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2176   {cab 2191   _Vcvv 2772    C_ wss 3166   ~Pcpw 3616   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-v 2774  df-in 3172  df-ss 3179  df-pw 3618  df-uni 3851
This theorem is referenced by:  pwpwssunieq  4016
  Copyright terms: Public domain W3C validator