ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwab Unicode version

Theorem pwpwab 4053
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Distinct variable group:    x, A

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 2802 . . 3  |-  x  e. 
_V
2 elpwpw 4052 . . 3  |-  ( x  e.  ~P ~P A  <->  ( x  e.  _V  /\  U. x  C_  A )
)
31, 2mpbiran 946 . 2  |-  ( x  e.  ~P ~P A  <->  U. x  C_  A )
43abbi2i 2344 1  |-  ~P ~P A  =  { x  |  U. x  C_  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   {cab 2215   _Vcvv 2799    C_ wss 3197   ~Pcpw 3649   U.cuni 3888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-uni 3889
This theorem is referenced by:  pwpwssunieq  4054
  Copyright terms: Public domain W3C validator