ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwssunieq Unicode version

Theorem pwpwssunieq 3953
Description: The class of sets whose union is equal to a given class is included in the double power class of that class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwssunieq  |-  { x  |  U. x  =  A }  C_  ~P ~P A
Distinct variable group:    x, A

Proof of Theorem pwpwssunieq
StepHypRef Expression
1 eqimss 3195 . . 3  |-  ( U. x  =  A  ->  U. x  C_  A )
21ss2abi 3213 . 2  |-  { x  |  U. x  =  A }  C_  { x  |  U. x  C_  A }
3 pwpwab 3952 . 2  |-  ~P ~P A  =  { x  |  U. x  C_  A }
42, 3sseqtrri 3176 1  |-  { x  |  U. x  =  A }  C_  ~P ~P A
Colors of variables: wff set class
Syntax hints:    = wceq 1343   {cab 2151    C_ wss 3115   ~Pcpw 3558   U.cuni 3788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ral 2448  df-v 2727  df-in 3121  df-ss 3128  df-pw 3560  df-uni 3789
This theorem is referenced by:  toponsspwpwg  12620  dmtopon  12621
  Copyright terms: Public domain W3C validator