| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwpwab | GIF version | ||
| Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.) |
| Ref | Expression |
|---|---|
| pwpwab | ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2802 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | elpwpw 4051 | . . 3 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ ∪ 𝑥 ⊆ 𝐴)) | |
| 3 | 1, 2 | mpbiran 946 | . 2 ⊢ (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ ∪ 𝑥 ⊆ 𝐴) |
| 4 | 3 | abbi2i 2344 | 1 ⊢ 𝒫 𝒫 𝐴 = {𝑥 ∣ ∪ 𝑥 ⊆ 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 {cab 2215 Vcvv 2799 ⊆ wss 3197 𝒫 cpw 3649 ∪ cuni 3887 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-pw 3651 df-uni 3888 |
| This theorem is referenced by: pwpwssunieq 4053 |
| Copyright terms: Public domain | W3C validator |