ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwab GIF version

Theorem pwpwab 4014
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 2774 . . 3 𝑥 ∈ V
2 elpwpw 4013 . . 3 (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ 𝑥𝐴))
31, 2mpbiran 942 . 2 (𝑥 ∈ 𝒫 𝒫 𝐴 𝑥𝐴)
43abbi2i 2319 1 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1372  wcel 2175  {cab 2190  Vcvv 2771  wss 3165  𝒫 cpw 3615   cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-v 2773  df-in 3171  df-ss 3178  df-pw 3617  df-uni 3850
This theorem is referenced by:  pwpwssunieq  4015
  Copyright terms: Public domain W3C validator