ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwab GIF version

Theorem pwpwab 3975
Description: The double power class written as a class abstraction: the class of sets whose union is included in the given class. (Contributed by BJ, 29-Apr-2021.)
Assertion
Ref Expression
pwpwab 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Distinct variable group:   𝑥,𝐴

Proof of Theorem pwpwab
StepHypRef Expression
1 vex 2741 . . 3 𝑥 ∈ V
2 elpwpw 3974 . . 3 (𝑥 ∈ 𝒫 𝒫 𝐴 ↔ (𝑥 ∈ V ∧ 𝑥𝐴))
31, 2mpbiran 940 . 2 (𝑥 ∈ 𝒫 𝒫 𝐴 𝑥𝐴)
43abbi2i 2292 1 𝒫 𝒫 𝐴 = {𝑥 𝑥𝐴}
Colors of variables: wff set class
Syntax hints:   = wceq 1353  wcel 2148  {cab 2163  Vcvv 2738  wss 3130  𝒫 cpw 3576   cuni 3810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2740  df-in 3136  df-ss 3143  df-pw 3578  df-uni 3811
This theorem is referenced by:  pwpwssunieq  3976
  Copyright terms: Public domain W3C validator