Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwunim | Unicode version |
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.) |
Ref | Expression |
---|---|
pwunim |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssunim 4269 | . . 3 | |
2 | pwunss 4268 | . . . 4 | |
3 | 2 | biantru 300 | . . 3 |
4 | 1, 3 | sylib 121 | . 2 |
5 | eqss 3162 | . 2 | |
6 | 4, 5 | sylibr 133 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 703 wceq 1348 cun 3119 wss 3121 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |