ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunim Unicode version

Theorem pwunim 4288
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwunim  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
) )

Proof of Theorem pwunim
StepHypRef Expression
1 pwssunim 4286 . . 3  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
) )
2 pwunss 4285 . . . 4  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
32biantru 302 . . 3  |-  ( ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
41, 3sylib 122 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  -> 
( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
5 eqss 3172 . 2  |-  ( ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
64, 5sylibr 134 1  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353    u. cun 3129    C_ wss 3131   ~Pcpw 3577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator