ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunim Unicode version

Theorem pwunim 4315
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwunim  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
) )

Proof of Theorem pwunim
StepHypRef Expression
1 pwssunim 4313 . . 3  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
) )
2 pwunss 4312 . . . 4  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
32biantru 302 . . 3  |-  ( ~P ( A  u.  B
)  C_  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
41, 3sylib 122 . 2  |-  ( ( A  C_  B  \/  B  C_  A )  -> 
( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
5 eqss 3194 . 2  |-  ( ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
)  <->  ( ~P ( A  u.  B )  C_  ( ~P A  u.  ~P B )  /\  ( ~P A  u.  ~P B )  C_  ~P ( A  u.  B
) ) )
64, 5sylibr 134 1  |-  ( ( A  C_  B  \/  B  C_  A )  ->  ~P ( A  u.  B
)  =  ( ~P A  u.  ~P B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364    u. cun 3151    C_ wss 3153   ~Pcpw 3601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator