ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwunim GIF version

Theorem pwunim 4264
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwunim ((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵))

Proof of Theorem pwunim
StepHypRef Expression
1 pwssunim 4262 . . 3 ((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵))
2 pwunss 4261 . . . 4 (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)
32biantru 300 . . 3 (𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)))
41, 3sylib 121 . 2 ((𝐴𝐵𝐵𝐴) → (𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)))
5 eqss 3157 . 2 (𝒫 (𝐴𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴𝐵)))
64, 5sylibr 133 1 ((𝐴𝐵𝐵𝐴) → 𝒫 (𝐴𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wo 698   = wceq 1343  cun 3114  wss 3116  𝒫 cpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator