Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > pwunim | GIF version |
Description: The power class of the union of two classes equals the union of their power classes, iff one class is a subclass of the other. Part of Exercise 7(b) of [Enderton] p. 28. (Contributed by Jim Kingdon, 30-Sep-2018.) |
Ref | Expression |
---|---|
pwunim | ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwssunim 4262 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵)) | |
2 | pwunss 4261 | . . . 4 ⊢ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵) | |
3 | 2 | biantru 300 | . . 3 ⊢ (𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵))) |
4 | 1, 3 | sylib 121 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → (𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵))) |
5 | eqss 3157 | . 2 ⊢ (𝒫 (𝐴 ∪ 𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵) ↔ (𝒫 (𝐴 ∪ 𝐵) ⊆ (𝒫 𝐴 ∪ 𝒫 𝐵) ∧ (𝒫 𝐴 ∪ 𝒫 𝐵) ⊆ 𝒫 (𝐴 ∪ 𝐵))) | |
6 | 4, 5 | sylibr 133 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐵 ⊆ 𝐴) → 𝒫 (𝐴 ∪ 𝐵) = (𝒫 𝐴 ∪ 𝒫 𝐵)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 698 = wceq 1343 ∪ cun 3114 ⊆ wss 3116 𝒫 cpw 3559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |