ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwpwpw0ss Unicode version

Theorem pwpwpw0ss 3847
Description: Compute the power set of the power set of the power set of the empty set. (See also pw0 3779 and pwpw0ss 3844.) (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwpwpw0ss  |-  ( {
(/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } }
)  C_  ~P { (/) ,  { (/) } }

Proof of Theorem pwpwpw0ss
StepHypRef Expression
1 pwprss 3845 1  |-  ( {
(/) ,  { (/) } }  u.  { { { (/) } } ,  { (/) ,  { (/) } } }
)  C_  ~P { (/) ,  { (/) } }
Colors of variables: wff set class
Syntax hints:    u. cun 3163    C_ wss 3165   (/)c0 3459   ~Pcpw 3615   {csn 3632   {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator