![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elpw | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
elpw.1 |
![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
elpw |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 |
. 2
![]() ![]() ![]() ![]() | |
2 | sseq1 3202 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | df-pw 3603 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | elab2 2908 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3159 df-ss 3166 df-pw 3603 |
This theorem is referenced by: velpw 3608 elpwg 3609 prsspw 3791 pwprss 3831 pwtpss 3832 pwv 3834 sspwuni 3997 iinpw 4003 iunpwss 4004 0elpw 4193 pwuni 4221 snelpw 4242 sspwb 4245 ssextss 4249 pwin 4313 pwunss 4314 iunpw 4511 xpsspw 4771 ssenen 6907 pw1ne3 7290 3nsssucpw1 7296 ioof 10037 tgdom 14240 distop 14253 epttop 14258 resttopon 14339 txuni2 14424 |
Copyright terms: Public domain | W3C validator |