| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpw | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| elpw.1 |
|
| Ref | Expression |
|---|---|
| elpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 |
. 2
| |
| 2 | sseq1 3220 |
. 2
| |
| 3 | df-pw 3623 |
. 2
| |
| 4 | 1, 2, 3 | elab2 2925 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-in 3176 df-ss 3183 df-pw 3623 |
| This theorem is referenced by: velpw 3628 elpwg 3629 prsspw 3814 pwprss 3855 pwtpss 3856 pwv 3858 sspwuni 4021 iinpw 4027 iunpwss 4028 0elpw 4219 pwuni 4247 snelpw 4269 sspwb 4273 ssextss 4277 pwin 4342 pwunss 4343 iunpw 4540 xpsspw 4800 ssenen 6968 pw1ne3 7371 3nsssucpw1 7377 ioof 10123 tgdom 14629 distop 14642 epttop 14647 resttopon 14728 txuni2 14813 umgrbien 15791 umgredg 15819 |
| Copyright terms: Public domain | W3C validator |