| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > elpw | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| elpw.1 | 
 | 
| Ref | Expression | 
|---|---|
| elpw | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elpw.1 | 
. 2
 | |
| 2 | sseq1 3206 | 
. 2
 | |
| 3 | df-pw 3607 | 
. 2
 | |
| 4 | 1, 2, 3 | elab2 2912 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3607 | 
| This theorem is referenced by: velpw 3612 elpwg 3613 prsspw 3795 pwprss 3835 pwtpss 3836 pwv 3838 sspwuni 4001 iinpw 4007 iunpwss 4008 0elpw 4197 pwuni 4225 snelpw 4246 sspwb 4249 ssextss 4253 pwin 4317 pwunss 4318 iunpw 4515 xpsspw 4775 ssenen 6912 pw1ne3 7297 3nsssucpw1 7303 ioof 10046 tgdom 14308 distop 14321 epttop 14326 resttopon 14407 txuni2 14492 | 
| Copyright terms: Public domain | W3C validator |