| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpw | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| elpw.1 |
|
| Ref | Expression |
|---|---|
| elpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 |
. 2
| |
| 2 | sseq1 3216 |
. 2
| |
| 3 | df-pw 3618 |
. 2
| |
| 4 | 1, 2, 3 | elab2 2921 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-in 3172 df-ss 3179 df-pw 3618 |
| This theorem is referenced by: velpw 3623 elpwg 3624 prsspw 3806 pwprss 3846 pwtpss 3847 pwv 3849 sspwuni 4012 iinpw 4018 iunpwss 4019 0elpw 4208 pwuni 4236 snelpw 4257 sspwb 4260 ssextss 4264 pwin 4329 pwunss 4330 iunpw 4527 xpsspw 4787 ssenen 6948 pw1ne3 7342 3nsssucpw1 7348 ioof 10093 tgdom 14544 distop 14557 epttop 14562 resttopon 14643 txuni2 14728 |
| Copyright terms: Public domain | W3C validator |