Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elpw | Unicode version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
Ref | Expression |
---|---|
elpw.1 |
Ref | Expression |
---|---|
elpw |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw.1 | . 2 | |
2 | sseq1 3170 | . 2 | |
3 | df-pw 3568 | . 2 | |
4 | 1, 2, 3 | elab2 2878 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wcel 2141 cvv 2730 wss 3121 cpw 3566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-in 3127 df-ss 3134 df-pw 3568 |
This theorem is referenced by: velpw 3573 elpwg 3574 prsspw 3752 pwprss 3792 pwtpss 3793 pwv 3795 sspwuni 3957 iinpw 3963 iunpwss 3964 0elpw 4150 pwuni 4178 snelpw 4198 sspwb 4201 ssextss 4205 pwin 4267 pwunss 4268 iunpw 4465 xpsspw 4723 ssenen 6829 pw1ne3 7207 3nsssucpw1 7213 ioof 9928 tgdom 12866 distop 12879 epttop 12884 resttopon 12965 txuni2 13050 |
Copyright terms: Public domain | W3C validator |