| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elpw | Unicode version | ||
| Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 31-Dec-1993.) |
| Ref | Expression |
|---|---|
| elpw.1 |
|
| Ref | Expression |
|---|---|
| elpw |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpw.1 |
. 2
| |
| 2 | sseq1 3207 |
. 2
| |
| 3 | df-pw 3608 |
. 2
| |
| 4 | 1, 2, 3 | elab2 2912 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-in 3163 df-ss 3170 df-pw 3608 |
| This theorem is referenced by: velpw 3613 elpwg 3614 prsspw 3796 pwprss 3836 pwtpss 3837 pwv 3839 sspwuni 4002 iinpw 4008 iunpwss 4009 0elpw 4198 pwuni 4226 snelpw 4247 sspwb 4250 ssextss 4254 pwin 4318 pwunss 4319 iunpw 4516 xpsspw 4776 ssenen 6921 pw1ne3 7313 3nsssucpw1 7319 ioof 10063 tgdom 14392 distop 14405 epttop 14410 resttopon 14491 txuni2 14576 |
| Copyright terms: Public domain | W3C validator |