ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  univ Unicode version

Theorem univ 4566
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ  |-  U. _V  =  _V

Proof of Theorem univ
StepHypRef Expression
1 pwv 3886 . . 3  |-  ~P _V  =  _V
21unieqi 3897 . 2  |-  U. ~P _V  =  U. _V
3 unipw 4302 . 2  |-  U. ~P _V  =  _V
42, 3eqtr3i 2252 1  |-  U. _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1395   _Vcvv 2799   ~Pcpw 3649   U.cuni 3887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-uni 3888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator