ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  univ Unicode version

Theorem univ 4511
Description: The union of the universe is the universe. Exercise 4.12(c) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
univ  |-  U. _V  =  _V

Proof of Theorem univ
StepHypRef Expression
1 pwv 3838 . . 3  |-  ~P _V  =  _V
21unieqi 3849 . 2  |-  U. ~P _V  =  U. _V
3 unipw 4250 . 2  |-  U. ~P _V  =  _V
42, 3eqtr3i 2219 1  |-  U. _V  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364   _Vcvv 2763   ~Pcpw 3605   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator