Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > qdass | GIF version |
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
Ref | Expression |
---|---|
qdass | ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unass 3284 | . 2 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) | |
2 | df-tp 3591 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
3 | 2 | uneq1i 3277 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) |
4 | df-pr 3590 | . . 3 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
5 | 4 | uneq2i 3278 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) |
6 | 1, 3, 5 | 3eqtr4ri 2202 | 1 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 ∪ cun 3119 {csn 3583 {cpr 3584 {ctp 3585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 df-un 3125 df-pr 3590 df-tp 3591 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |