ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdass GIF version

Theorem qdass 3673
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdass ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})

Proof of Theorem qdass
StepHypRef Expression
1 unass 3279 . 2 (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷}))
2 df-tp 3584 . . 3 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
32uneq1i 3272 . 2 ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷})
4 df-pr 3583 . . 3 {𝐶, 𝐷} = ({𝐶} ∪ {𝐷})
54uneq2i 3273 . 2 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷}))
61, 3, 53eqtr4ri 2197 1 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷})
Colors of variables: wff set class
Syntax hints:   = wceq 1343  cun 3114  {csn 3576  {cpr 3577  {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-pr 3583  df-tp 3584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator