| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qdass | GIF version | ||
| Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| Ref | Expression |
|---|---|
| qdass | ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unass 3330 | . 2 ⊢ (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) | |
| 2 | df-tp 3641 | . . 3 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 3 | 2 | uneq1i 3323 | . 2 ⊢ ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) = (({𝐴, 𝐵} ∪ {𝐶}) ∪ {𝐷}) |
| 4 | df-pr 3640 | . . 3 ⊢ {𝐶, 𝐷} = ({𝐶} ∪ {𝐷}) | |
| 5 | 4 | uneq2i 3324 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵} ∪ ({𝐶} ∪ {𝐷})) |
| 6 | 1, 3, 5 | 3eqtr4ri 2237 | 1 ⊢ ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴, 𝐵, 𝐶} ∪ {𝐷}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∪ cun 3164 {csn 3633 {cpr 3634 {ctp 3635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-pr 3640 df-tp 3641 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |