ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iuniin Unicode version

Theorem iuniin 3951
Description: Law combining indexed union with indexed intersection. Eq. 14 in [KuratowskiMostowski] p. 109. This theorem also appears as the last example at http://en.wikipedia.org/wiki/Union%5F%28set%5Ftheory%29. (Contributed by NM, 17-Aug-2004.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
iuniin  |-  U_ x  e.  A  |^|_ y  e.  B  C  C_  |^|_ y  e.  B  U_ x  e.  A  C
Distinct variable groups:    x, y    y, A    x, B
Allowed substitution hints:    A( x)    B( y)    C( x, y)

Proof of Theorem iuniin
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 r19.12 2614 . . . 4  |-  ( E. x  e.  A  A. y  e.  B  z  e.  C  ->  A. y  e.  B  E. x  e.  A  z  e.  C )
2 vex 2779 . . . . . 6  |-  z  e. 
_V
3 eliin 3946 . . . . . 6  |-  ( z  e.  _V  ->  (
z  e.  |^|_ y  e.  B  C  <->  A. y  e.  B  z  e.  C ) )
42, 3ax-mp 5 . . . . 5  |-  ( z  e.  |^|_ y  e.  B  C 
<-> 
A. y  e.  B  z  e.  C )
54rexbii 2515 . . . 4  |-  ( E. x  e.  A  z  e.  |^|_ y  e.  B  C 
<->  E. x  e.  A  A. y  e.  B  z  e.  C )
6 eliun 3945 . . . . 5  |-  ( z  e.  U_ x  e.  A  C  <->  E. x  e.  A  z  e.  C )
76ralbii 2514 . . . 4  |-  ( A. y  e.  B  z  e.  U_ x  e.  A  C 
<-> 
A. y  e.  B  E. x  e.  A  z  e.  C )
81, 5, 73imtr4i 201 . . 3  |-  ( E. x  e.  A  z  e.  |^|_ y  e.  B  C  ->  A. y  e.  B  z  e.  U_ x  e.  A  C )
9 eliun 3945 . . 3  |-  ( z  e.  U_ x  e.  A  |^|_ y  e.  B  C 
<->  E. x  e.  A  z  e.  |^|_ y  e.  B  C )
10 eliin 3946 . . . 4  |-  ( z  e.  _V  ->  (
z  e.  |^|_ y  e.  B  U_ x  e.  A  C  <->  A. y  e.  B  z  e.  U_ x  e.  A  C
) )
112, 10ax-mp 5 . . 3  |-  ( z  e.  |^|_ y  e.  B  U_ x  e.  A  C  <->  A. y  e.  B  z  e.  U_ x  e.  A  C )
128, 9, 113imtr4i 201 . 2  |-  ( z  e.  U_ x  e.  A  |^|_ y  e.  B  C  ->  z  e.  |^|_ y  e.  B  U_ x  e.  A  C )
1312ssriv 3205 1  |-  U_ x  e.  A  |^|_ y  e.  B  C  C_  |^|_ y  e.  B  U_ x  e.  A  C
Colors of variables: wff set class
Syntax hints:    <-> wb 105    e. wcel 2178   A.wral 2486   E.wrex 2487   _Vcvv 2776    C_ wss 3174   U_ciun 3941   |^|_ciin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-in 3180  df-ss 3187  df-iun 3943  df-iin 3944
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator