ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.42v Unicode version

Theorem r19.42v 2651
Description: Restricted version of Theorem 19.42 of [Margaris] p. 90. (Contributed by NM, 27-May-1998.)
Assertion
Ref Expression
r19.42v  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  (
ph  /\  E. x  e.  A  ps )
)
Distinct variable group:    ph, x
Allowed substitution hints:    ps( x)    A( x)

Proof of Theorem r19.42v
StepHypRef Expression
1 r19.41v 2650 . 2  |-  ( E. x  e.  A  ( ps  /\  ph )  <->  ( E. x  e.  A  ps  /\  ph ) )
2 ancom 266 . . 3  |-  ( (
ph  /\  ps )  <->  ( ps  /\  ph )
)
32rexbii 2501 . 2  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  E. x  e.  A  ( ps  /\  ph )
)
4 ancom 266 . 2  |-  ( (
ph  /\  E. x  e.  A  ps )  <->  ( E. x  e.  A  ps  /\  ph ) )
51, 3, 43bitr4i 212 1  |-  ( E. x  e.  A  (
ph  /\  ps )  <->  (
ph  /\  E. x  e.  A  ps )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wrex 2473
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-rex 2478
This theorem is referenced by:  ceqsrexbv  2892  ceqsrex2v  2893  2reuswapdc  2965  iunrab  3961  iunin2  3977  iundif2ss  3979  iunopab  4313  elxp2  4678  cnvuni  4849  elunirn  5810  f1oiso  5870  oprabrexex2  6184  genpdflem  7569  1idprl  7652  1idpru  7653  ltexprlemm  7662  rexuz2  9649  4fvwrd4  10209  divalgb  12069
  Copyright terms: Public domain W3C validator