| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rabeqf | GIF version | ||
| Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
| Ref | Expression |
|---|---|
| rabeqf.1 | ⊢ Ⅎ𝑥𝐴 |
| rabeqf.2 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| rabeqf | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | rabeqf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | 1, 2 | nfeq 2356 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
| 4 | eleq2 2269 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 5 | 4 | anbi1d 465 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
| 6 | 3, 5 | abbid 2322 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
| 7 | df-rab 2493 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
| 8 | df-rab 2493 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
| 9 | 6, 7, 8 | 3eqtr4g 2263 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2176 {cab 2191 Ⅎwnfc 2335 {crab 2488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-rab 2493 |
| This theorem is referenced by: rabeqif 2763 rabeq 2764 |
| Copyright terms: Public domain | W3C validator |