ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabeqf GIF version

Theorem rabeqf 2720
Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
Hypotheses
Ref Expression
rabeqf.1 𝑥𝐴
rabeqf.2 𝑥𝐵
Assertion
Ref Expression
rabeqf (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})

Proof of Theorem rabeqf
StepHypRef Expression
1 rabeqf.1 . . . 4 𝑥𝐴
2 rabeqf.2 . . . 4 𝑥𝐵
31, 2nfeq 2320 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2234 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 462 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5abbid 2287 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐵𝜑)})
7 df-rab 2457 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
8 df-rab 2457 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
96, 7, 83eqtr4g 2228 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1348  wcel 2141  {cab 2156  wnfc 2299  {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-rab 2457
This theorem is referenced by:  rabeqif  2721  rabeq  2722
  Copyright terms: Public domain W3C validator