Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabn0m | Unicode version |
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) |
Ref | Expression |
---|---|
rabn0m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2450 | . 2 | |
2 | rabid 2641 | . . 3 | |
3 | 2 | exbii 1593 | . 2 |
4 | nfv 1516 | . . 3 | |
5 | df-rab 2453 | . . . . 5 | |
6 | 5 | eleq2i 2233 | . . . 4 |
7 | nfsab1 2155 | . . . 4 | |
8 | 6, 7 | nfxfr 1462 | . . 3 |
9 | eleq1 2229 | . . 3 | |
10 | 4, 8, 9 | cbvex 1744 | . 2 |
11 | 1, 3, 10 | 3bitr2ri 208 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1480 wcel 2136 cab 2151 wrex 2445 crab 2448 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-11 1494 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-rex 2450 df-rab 2453 |
This theorem is referenced by: exss 4205 cc4f 7210 cc4n 7212 nnwosdc 11972 |
Copyright terms: Public domain | W3C validator |