ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0m Unicode version

Theorem rabn0m 3436
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.)
Assertion
Ref Expression
rabn0m  |-  ( E. y  y  e.  {
x  e.  A  |  ph }  <->  E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A    ph, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rabn0m
StepHypRef Expression
1 df-rex 2450 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 rabid 2641 . . 3  |-  ( x  e.  { x  e.  A  |  ph }  <->  ( x  e.  A  /\  ph ) )
32exbii 1593 . 2  |-  ( E. x  x  e.  {
x  e.  A  |  ph }  <->  E. x ( x  e.  A  /\  ph ) )
4 nfv 1516 . . 3  |-  F/ y  x  e.  { x  e.  A  |  ph }
5 df-rab 2453 . . . . 5  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
65eleq2i 2233 . . . 4  |-  ( y  e.  { x  e.  A  |  ph }  <->  y  e.  { x  |  ( x  e.  A  /\  ph ) } )
7 nfsab1 2155 . . . 4  |-  F/ x  y  e.  { x  |  ( x  e.  A  /\  ph ) }
86, 7nfxfr 1462 . . 3  |-  F/ x  y  e.  { x  e.  A  |  ph }
9 eleq1 2229 . . 3  |-  ( x  =  y  ->  (
x  e.  { x  e.  A  |  ph }  <->  y  e.  { x  e.  A  |  ph }
) )
104, 8, 9cbvex 1744 . 2  |-  ( E. x  x  e.  {
x  e.  A  |  ph }  <->  E. y  y  e. 
{ x  e.  A  |  ph } )
111, 3, 103bitr2ri 208 1  |-  ( E. y  y  e.  {
x  e.  A  |  ph }  <->  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104   E.wex 1480    e. wcel 2136   {cab 2151   E.wrex 2445   {crab 2448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-rex 2450  df-rab 2453
This theorem is referenced by:  exss  4205  cc4f  7210  cc4n  7212  nnwosdc  11972
  Copyright terms: Public domain W3C validator