ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0m Unicode version

Theorem rabn0m 3474
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.)
Assertion
Ref Expression
rabn0m  |-  ( E. y  y  e.  {
x  e.  A  |  ph }  <->  E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A    ph, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rabn0m
StepHypRef Expression
1 df-rex 2478 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 rabid 2670 . . 3  |-  ( x  e.  { x  e.  A  |  ph }  <->  ( x  e.  A  /\  ph ) )
32exbii 1616 . 2  |-  ( E. x  x  e.  {
x  e.  A  |  ph }  <->  E. x ( x  e.  A  /\  ph ) )
4 nfv 1539 . . 3  |-  F/ y  x  e.  { x  e.  A  |  ph }
5 df-rab 2481 . . . . 5  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
65eleq2i 2260 . . . 4  |-  ( y  e.  { x  e.  A  |  ph }  <->  y  e.  { x  |  ( x  e.  A  /\  ph ) } )
7 nfsab1 2183 . . . 4  |-  F/ x  y  e.  { x  |  ( x  e.  A  /\  ph ) }
86, 7nfxfr 1485 . . 3  |-  F/ x  y  e.  { x  e.  A  |  ph }
9 eleq1 2256 . . 3  |-  ( x  =  y  ->  (
x  e.  { x  e.  A  |  ph }  <->  y  e.  { x  e.  A  |  ph }
) )
104, 8, 9cbvex 1767 . 2  |-  ( E. x  x  e.  {
x  e.  A  |  ph }  <->  E. y  y  e. 
{ x  e.  A  |  ph } )
111, 3, 103bitr2ri 209 1  |-  ( E. y  y  e.  {
x  e.  A  |  ph }  <->  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1503    e. wcel 2164   {cab 2179   E.wrex 2473   {crab 2476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-rex 2478  df-rab 2481
This theorem is referenced by:  exss  4256  cc4f  7329  cc4n  7331  nnwosdc  12176  lspf  13885
  Copyright terms: Public domain W3C validator