| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > rabn0m | Unicode version | ||
| Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) | 
| Ref | Expression | 
|---|---|
| rabn0m | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-rex 2481 | 
. 2
 | |
| 2 | rabid 2673 | 
. . 3
 | |
| 3 | 2 | exbii 1619 | 
. 2
 | 
| 4 | nfv 1542 | 
. . 3
 | |
| 5 | df-rab 2484 | 
. . . . 5
 | |
| 6 | 5 | eleq2i 2263 | 
. . . 4
 | 
| 7 | nfsab1 2186 | 
. . . 4
 | |
| 8 | 6, 7 | nfxfr 1488 | 
. . 3
 | 
| 9 | eleq1 2259 | 
. . 3
 | |
| 10 | 4, 8, 9 | cbvex 1770 | 
. 2
 | 
| 11 | 1, 3, 10 | 3bitr2ri 209 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-rex 2481 df-rab 2484 | 
| This theorem is referenced by: exss 4260 cc4f 7336 cc4n 7338 nnwosdc 12206 lspf 13945 | 
| Copyright terms: Public domain | W3C validator |