Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabn0m | Unicode version |
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) |
Ref | Expression |
---|---|
rabn0m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2454 | . 2 | |
2 | rabid 2645 | . . 3 | |
3 | 2 | exbii 1598 | . 2 |
4 | nfv 1521 | . . 3 | |
5 | df-rab 2457 | . . . . 5 | |
6 | 5 | eleq2i 2237 | . . . 4 |
7 | nfsab1 2160 | . . . 4 | |
8 | 6, 7 | nfxfr 1467 | . . 3 |
9 | eleq1 2233 | . . 3 | |
10 | 4, 8, 9 | cbvex 1749 | . 2 |
11 | 1, 3, 10 | 3bitr2ri 208 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wex 1485 wcel 2141 cab 2156 wrex 2449 crab 2452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-11 1499 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-rex 2454 df-rab 2457 |
This theorem is referenced by: exss 4212 cc4f 7231 cc4n 7233 nnwosdc 11994 |
Copyright terms: Public domain | W3C validator |