Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rabn0m | Unicode version |
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.) |
Ref | Expression |
---|---|
rabn0m |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 2459 | . 2 | |
2 | rabid 2650 | . . 3 | |
3 | 2 | exbii 1603 | . 2 |
4 | nfv 1526 | . . 3 | |
5 | df-rab 2462 | . . . . 5 | |
6 | 5 | eleq2i 2242 | . . . 4 |
7 | nfsab1 2165 | . . . 4 | |
8 | 6, 7 | nfxfr 1472 | . . 3 |
9 | eleq1 2238 | . . 3 | |
10 | 4, 8, 9 | cbvex 1754 | . 2 |
11 | 1, 3, 10 | 3bitr2ri 209 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wex 1490 wcel 2146 cab 2161 wrex 2454 crab 2457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-rex 2459 df-rab 2462 |
This theorem is referenced by: exss 4221 cc4f 7243 cc4n 7245 nnwosdc 12007 |
Copyright terms: Public domain | W3C validator |