ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rabn0m Unicode version

Theorem rabn0m 3478
Description: Inhabited restricted class abstraction. (Contributed by Jim Kingdon, 18-Sep-2018.)
Assertion
Ref Expression
rabn0m  |-  ( E. y  y  e.  {
x  e.  A  |  ph }  <->  E. x  e.  A  ph )
Distinct variable groups:    x, y    y, A    ph, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rabn0m
StepHypRef Expression
1 df-rex 2481 . 2  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
2 rabid 2673 . . 3  |-  ( x  e.  { x  e.  A  |  ph }  <->  ( x  e.  A  /\  ph ) )
32exbii 1619 . 2  |-  ( E. x  x  e.  {
x  e.  A  |  ph }  <->  E. x ( x  e.  A  /\  ph ) )
4 nfv 1542 . . 3  |-  F/ y  x  e.  { x  e.  A  |  ph }
5 df-rab 2484 . . . . 5  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
65eleq2i 2263 . . . 4  |-  ( y  e.  { x  e.  A  |  ph }  <->  y  e.  { x  |  ( x  e.  A  /\  ph ) } )
7 nfsab1 2186 . . . 4  |-  F/ x  y  e.  { x  |  ( x  e.  A  /\  ph ) }
86, 7nfxfr 1488 . . 3  |-  F/ x  y  e.  { x  e.  A  |  ph }
9 eleq1 2259 . . 3  |-  ( x  =  y  ->  (
x  e.  { x  e.  A  |  ph }  <->  y  e.  { x  e.  A  |  ph }
) )
104, 8, 9cbvex 1770 . 2  |-  ( E. x  x  e.  {
x  e.  A  |  ph }  <->  E. y  y  e. 
{ x  e.  A  |  ph } )
111, 3, 103bitr2ri 209 1  |-  ( E. y  y  e.  {
x  e.  A  |  ph }  <->  E. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105   E.wex 1506    e. wcel 2167   {cab 2182   E.wrex 2476   {crab 2479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-rex 2481  df-rab 2484
This theorem is referenced by:  exss  4260  cc4f  7336  cc4n  7338  nnwosdc  12206  lspf  13945
  Copyright terms: Public domain W3C validator