ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrab2 Unicode version

Theorem ralrab2 2895
Description: Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
ralrab2  |-  ( A. x  e.  { y  e.  A  |  ph } ps 
<-> 
A. y  e.  A  ( ph  ->  ch )
)
Distinct variable groups:    x, y    x, A    ch, x    ph, x    ps, y
Allowed substitution hints:    ph( y)    ps( x)    ch( y)    A( y)

Proof of Theorem ralrab2
StepHypRef Expression
1 df-rab 2457 . . 3  |-  { y  e.  A  |  ph }  =  { y  |  ( y  e.  A  /\  ph ) }
21raleqi 2669 . 2  |-  ( A. x  e.  { y  e.  A  |  ph } ps 
<-> 
A. x  e.  {
y  |  ( y  e.  A  /\  ph ) } ps )
3 ralab2.1 . . 3  |-  ( x  =  y  ->  ( ps 
<->  ch ) )
43ralab2 2894 . 2  |-  ( A. x  e.  { y  |  ( y  e.  A  /\  ph ) } ps  <->  A. y ( ( y  e.  A  /\  ph )  ->  ch )
)
5 impexp 261 . . . 4  |-  ( ( ( y  e.  A  /\  ph )  ->  ch ) 
<->  ( y  e.  A  ->  ( ph  ->  ch ) ) )
65albii 1463 . . 3  |-  ( A. y ( ( y  e.  A  /\  ph )  ->  ch )  <->  A. y
( y  e.  A  ->  ( ph  ->  ch ) ) )
7 df-ral 2453 . . 3  |-  ( A. y  e.  A  ( ph  ->  ch )  <->  A. y
( y  e.  A  ->  ( ph  ->  ch ) ) )
86, 7bitr4i 186 . 2  |-  ( A. y ( ( y  e.  A  /\  ph )  ->  ch )  <->  A. y  e.  A  ( ph  ->  ch ) )
92, 4, 83bitri 205 1  |-  ( A. x  e.  { y  e.  A  |  ph } ps 
<-> 
A. y  e.  A  ( ph  ->  ch )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1346    e. wcel 2141   {cab 2156   A.wral 2448   {crab 2452
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rab 2457
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator