ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralab2 GIF version

Theorem ralab2 2937
Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
ralab2 (∀𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∀𝑦(𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem ralab2
StepHypRef Expression
1 df-ral 2489 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜓))
2 nfsab1 2195 . . . 4 𝑦 𝑥 ∈ {𝑦𝜑}
3 nfv 1551 . . . 4 𝑦𝜓
42, 3nfim 1595 . . 3 𝑦(𝑥 ∈ {𝑦𝜑} → 𝜓)
5 nfv 1551 . . 3 𝑥(𝜑𝜒)
6 eleq1 2268 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝑦 ∈ {𝑦𝜑}))
7 abid 2193 . . . . 5 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
86, 7bitrdi 196 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝜑))
9 ralab2.1 . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
108, 9imbi12d 234 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦𝜑} → 𝜓) ↔ (𝜑𝜒)))
114, 5, 10cbval 1777 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜓) ↔ ∀𝑦(𝜑𝜒))
121, 11bitri 184 1 (∀𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∀𝑦(𝜑𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wal 1371  wcel 2176  {cab 2191  wral 2484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489
This theorem is referenced by:  ralrab2  2938  ssintab  3902
  Copyright terms: Public domain W3C validator