![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ralab2 | GIF version |
Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
ralab2 | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 2375 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓)) | |
2 | nfsab1 2085 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑦 ∣ 𝜑} | |
3 | nfv 1473 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
4 | 2, 3 | nfim 1516 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) |
5 | nfv 1473 | . . 3 ⊢ Ⅎ𝑥(𝜑 → 𝜒) | |
6 | eleq1 2157 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
7 | abid 2083 | . . . . 5 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
8 | 6, 7 | syl6bb 195 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑)) |
9 | ralab2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
10 | 8, 9 | imbi12d 233 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) ↔ (𝜑 → 𝜒))) |
11 | 4, 5, 10 | cbval 1691 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) ↔ ∀𝑦(𝜑 → 𝜒)) |
12 | 1, 11 | bitri 183 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 104 ∀wal 1294 ∈ wcel 1445 {cab 2081 ∀wral 2370 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-11 1449 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-ral 2375 |
This theorem is referenced by: ralrab2 2794 ssintab 3727 |
Copyright terms: Public domain | W3C validator |