| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ralab2 | GIF version | ||
| Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| Ref | Expression |
|---|---|
| ralab2.1 | ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| ralab2 | ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral 2491 | . 2 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓)) | |
| 2 | nfsab1 2197 | . . . 4 ⊢ Ⅎ𝑦 𝑥 ∈ {𝑦 ∣ 𝜑} | |
| 3 | nfv 1552 | . . . 4 ⊢ Ⅎ𝑦𝜓 | |
| 4 | 2, 3 | nfim 1596 | . . 3 ⊢ Ⅎ𝑦(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) |
| 5 | nfv 1552 | . . 3 ⊢ Ⅎ𝑥(𝜑 → 𝜒) | |
| 6 | eleq1 2270 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝑦 ∈ {𝑦 ∣ 𝜑})) | |
| 7 | abid 2195 | . . . . 5 ⊢ (𝑦 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑) | |
| 8 | 6, 7 | bitrdi 196 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ {𝑦 ∣ 𝜑} ↔ 𝜑)) |
| 9 | ralab2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) | |
| 10 | 8, 9 | imbi12d 234 | . . 3 ⊢ (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) ↔ (𝜑 → 𝜒))) |
| 11 | 4, 5, 10 | cbval 1778 | . 2 ⊢ (∀𝑥(𝑥 ∈ {𝑦 ∣ 𝜑} → 𝜓) ↔ ∀𝑦(𝜑 → 𝜒)) |
| 12 | 1, 11 | bitri 184 | 1 ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∀wal 1371 ∈ wcel 2178 {cab 2193 ∀wral 2486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-ral 2491 |
| This theorem is referenced by: ralrab2 2945 ssintab 3916 |
| Copyright terms: Public domain | W3C validator |