ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrnmpo Unicode version

Theorem ralrnmpo 6033
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
ralrnmpo.2  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralrnmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. y  e.  B  ps ) )
Distinct variable groups:    y, z, A   
z, B    z, C    z, F    ps, z    x, y, z    ph, x, y
Allowed substitution hints:    ph( z)    ps( x, y)    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y, z)

Proof of Theorem ralrnmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpo 6029 . . . 4  |-  ran  F  =  { w  |  E. x  e.  A  E. y  e.  B  w  =  C }
32raleqi 2694 . . 3  |-  ( A. z  e.  ran  F ph  <->  A. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph )
4 eqeq1 2200 . . . . 5  |-  ( w  =  z  ->  (
w  =  C  <->  z  =  C ) )
542rexbidv 2519 . . . 4  |-  ( w  =  z  ->  ( E. x  e.  A  E. y  e.  B  w  =  C  <->  E. x  e.  A  E. y  e.  B  z  =  C ) )
65ralab 2920 . . 3  |-  ( A. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph 
<-> 
A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )
)
7 ralcom4 2782 . . . 4  |-  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. z A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph ) )
8 r19.23v 2603 . . . . 5  |-  ( A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph )  <->  ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph ) )
98albii 1481 . . . 4  |-  ( A. z A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph )  <->  A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )
)
107, 9bitr2i 185 . . 3  |-  ( A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
113, 6, 103bitri 206 . 2  |-  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph ) )
12 ralcom4 2782 . . . . . 6  |-  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. z A. y  e.  B  ( z  =  C  ->  ph ) )
13 r19.23v 2603 . . . . . . 7  |-  ( A. y  e.  B  (
z  =  C  ->  ph )  <->  ( E. y  e.  B  z  =  C  ->  ph ) )
1413albii 1481 . . . . . 6  |-  ( A. z A. y  e.  B  ( z  =  C  ->  ph )  <->  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
1512, 14bitri 184 . . . . 5  |-  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
16 nfv 1539 . . . . . . . 8  |-  F/ z ps
17 ralrnmpo.2 . . . . . . . 8  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
1816, 17ceqsalg 2788 . . . . . . 7  |-  ( C  e.  V  ->  ( A. z ( z  =  C  ->  ph )  <->  ps )
)
1918ralimi 2557 . . . . . 6  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( A. z ( z  =  C  ->  ph )  <->  ps )
)
20 ralbi 2626 . . . . . 6  |-  ( A. y  e.  B  ( A. z ( z  =  C  ->  ph )  <->  ps )  ->  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. y  e.  B  ps ) )
2119, 20syl 14 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
2215, 21bitr3id 194 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
2322ralimi 2557 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
24 ralbi 2626 . . 3  |-  ( A. x  e.  A  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )  ->  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. y  e.  B  ps ) )
2523, 24syl 14 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. y  e.  B  ps )
)
2611, 25bitrid 192 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1362    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   E.wrex 2473   ran crn 4660    e. cmpo 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-cnv 4667  df-dm 4669  df-rn 4670  df-oprab 5922  df-mpo 5923
This theorem is referenced by:  txcnp  14439  txcnmpt  14441
  Copyright terms: Public domain W3C validator