ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralrnmpo Unicode version

Theorem ralrnmpo 5936
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
Hypotheses
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
ralrnmpo.2  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
ralrnmpo  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. y  e.  B  ps ) )
Distinct variable groups:    y, z, A   
z, B    z, C    z, F    ps, z    x, y, z    ph, x, y
Allowed substitution hints:    ph( z)    ps( x, y)    A( x)    B( x, y)    C( x, y)    F( x, y)    V( x, y, z)

Proof of Theorem ralrnmpo
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 rngop.1 . . . . 5  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
21rnmpo 5932 . . . 4  |-  ran  F  =  { w  |  E. x  e.  A  E. y  e.  B  w  =  C }
32raleqi 2656 . . 3  |-  ( A. z  e.  ran  F ph  <->  A. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph )
4 eqeq1 2164 . . . . 5  |-  ( w  =  z  ->  (
w  =  C  <->  z  =  C ) )
542rexbidv 2482 . . . 4  |-  ( w  =  z  ->  ( E. x  e.  A  E. y  e.  B  w  =  C  <->  E. x  e.  A  E. y  e.  B  z  =  C ) )
65ralab 2872 . . 3  |-  ( A. z  e.  { w  |  E. x  e.  A  E. y  e.  B  w  =  C } ph 
<-> 
A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )
)
7 ralcom4 2734 . . . 4  |-  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. z A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph ) )
8 r19.23v 2566 . . . . 5  |-  ( A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph )  <->  ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph ) )
98albii 1450 . . . 4  |-  ( A. z A. x  e.  A  ( E. y  e.  B  z  =  C  ->  ph )  <->  A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )
)
107, 9bitr2i 184 . . 3  |-  ( A. z ( E. x  e.  A  E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
113, 6, 103bitri 205 . 2  |-  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph ) )
12 ralcom4 2734 . . . . . 6  |-  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. z A. y  e.  B  ( z  =  C  ->  ph ) )
13 r19.23v 2566 . . . . . . 7  |-  ( A. y  e.  B  (
z  =  C  ->  ph )  <->  ( E. y  e.  B  z  =  C  ->  ph ) )
1413albii 1450 . . . . . 6  |-  ( A. z A. y  e.  B  ( z  =  C  ->  ph )  <->  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
1512, 14bitri 183 . . . . 5  |-  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. z
( E. y  e.  B  z  =  C  ->  ph ) )
16 nfv 1508 . . . . . . . 8  |-  F/ z ps
17 ralrnmpo.2 . . . . . . . 8  |-  ( z  =  C  ->  ( ph 
<->  ps ) )
1816, 17ceqsalg 2740 . . . . . . 7  |-  ( C  e.  V  ->  ( A. z ( z  =  C  ->  ph )  <->  ps )
)
1918ralimi 2520 . . . . . 6  |-  ( A. y  e.  B  C  e.  V  ->  A. y  e.  B  ( A. z ( z  =  C  ->  ph )  <->  ps )
)
20 ralbi 2589 . . . . . 6  |-  ( A. y  e.  B  ( A. z ( z  =  C  ->  ph )  <->  ps )  ->  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. y  e.  B  ps ) )
2119, 20syl 14 . . . . 5  |-  ( A. y  e.  B  C  e.  V  ->  ( A. y  e.  B  A. z ( z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
2215, 21bitr3id 193 . . . 4  |-  ( A. y  e.  B  C  e.  V  ->  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
2322ralimi 2520 . . 3  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  A. x  e.  A  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )
)
24 ralbi 2589 . . 3  |-  ( A. x  e.  A  ( A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. y  e.  B  ps )  ->  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. y  e.  B  ps ) )
2523, 24syl 14 . 2  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. x  e.  A  A. z ( E. y  e.  B  z  =  C  ->  ph )  <->  A. x  e.  A  A. y  e.  B  ps )
)
2611, 25syl5bb 191 1  |-  ( A. x  e.  A  A. y  e.  B  C  e.  V  ->  ( A. z  e.  ran  F ph  <->  A. x  e.  A  A. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1333    = wceq 1335    e. wcel 2128   {cab 2143   A.wral 2435   E.wrex 2436   ran crn 4588    e. cmpo 5827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-br 3967  df-opab 4027  df-cnv 4595  df-dm 4597  df-rn 4598  df-oprab 5829  df-mpo 5830
This theorem is referenced by:  txcnp  12713  txcnmpt  12715
  Copyright terms: Public domain W3C validator