Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ralrnmpo | Unicode version |
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.) |
Ref | Expression |
---|---|
rngop.1 | |
ralrnmpo.2 |
Ref | Expression |
---|---|
ralrnmpo |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngop.1 | . . . . 5 | |
2 | 1 | rnmpo 5952 | . . . 4 |
3 | 2 | raleqi 2665 | . . 3 |
4 | eqeq1 2172 | . . . . 5 | |
5 | 4 | 2rexbidv 2491 | . . . 4 |
6 | 5 | ralab 2886 | . . 3 |
7 | ralcom4 2748 | . . . 4 | |
8 | r19.23v 2575 | . . . . 5 | |
9 | 8 | albii 1458 | . . . 4 |
10 | 7, 9 | bitr2i 184 | . . 3 |
11 | 3, 6, 10 | 3bitri 205 | . 2 |
12 | ralcom4 2748 | . . . . . 6 | |
13 | r19.23v 2575 | . . . . . . 7 | |
14 | 13 | albii 1458 | . . . . . 6 |
15 | 12, 14 | bitri 183 | . . . . 5 |
16 | nfv 1516 | . . . . . . . 8 | |
17 | ralrnmpo.2 | . . . . . . . 8 | |
18 | 16, 17 | ceqsalg 2754 | . . . . . . 7 |
19 | 18 | ralimi 2529 | . . . . . 6 |
20 | ralbi 2598 | . . . . . 6 | |
21 | 19, 20 | syl 14 | . . . . 5 |
22 | 15, 21 | bitr3id 193 | . . . 4 |
23 | 22 | ralimi 2529 | . . 3 |
24 | ralbi 2598 | . . 3 | |
25 | 23, 24 | syl 14 | . 2 |
26 | 11, 25 | syl5bb 191 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wal 1341 wceq 1343 wcel 2136 cab 2151 wral 2444 wrex 2445 crn 4605 cmpo 5844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-cnv 4612 df-dm 4614 df-rn 4615 df-oprab 5846 df-mpo 5847 |
This theorem is referenced by: txcnp 12911 txcnmpt 12913 |
Copyright terms: Public domain | W3C validator |